Skip to main content
Log in

Design of Sierpinski Knopp Inspired Fractal Antenna for Public Safety Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article presents a design of compact Sierpinski Knopp Fractal (SKF) antenna for public safety applications. The proposed antenna consists of Sierpinski Knopp space-filling curve inspired radiating element, partial ground plane, and microstrip feed. The physical dimension of the antenna is 35 × 35 × 1.6 mm3 (0.58λ × 0.58λ × 0.03λ at the operating frequency of 4979 MHz). The proposed antenna has been manufactured and examined by using the Agilent Vector Network Analyzer (VNA) under anechoic chamber. The experimental results reveal that the antenna exhibits a reflection coefficient of − 17.5 dB at 4979 MHz with an impedance bandwidth of 180 MHz. The measured results of the designed SKF antenna are offered good accord with that of simulated results. It is suitable for Public Protection and Disaster Relief (PPDR) communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Baroni, A., Nepa, P., & Rogier, H. (2016). Wearable self-tuning antenna for emergency rescue operations. IET Microwaves, Antenna, and Propagation, 10, 173–183.

    Article  Google Scholar 

  2. El-Khamy, S. E., Zaki, A., Hamdy, S., & El-Khouly, A. (2017). A new fractal-like tree structure of circular patch antennas for UWB and 5G multi-band applications. Microwave and Optical Technology Letters, 59, 2168–2174.

    Article  Google Scholar 

  3. Elavarasi, C., & Shanmuganantham, T. (2017). SRR loaded periwinkle flower shaped fractal antenna for multiband applications. Microwave and Optical Technology Letters, 59, 2518–2525.

    Article  Google Scholar 

  4. Singhal, S., & Singh, A. K. (2019). Flower-shaped ultra-wideband fractal antenna. International Journal of RF and Microwave Computer-Aided Engineering, 29(10), e21885. https://doi.org/10.1002/mmce.21885.

    Article  Google Scholar 

  5. Bhatia, S. S., & Sivia, J. S. (2018). Analysis and design of circular fractal antenna array for multiband applications. International Journal of Information Technology., 1–11 https://doi.org/10.1007/s41870-018-0186-0.

  6. Awan, W. A., Hussain, N., & Le, T. T. (2019). Ultra-thin flexible fractal antenna for 2.45 GHz application with wideband harmonic rejection. AEU-International Journal of Electronics and Communications., 110, 1–7. https://doi.org/10.1016/j.aeue.2019.152851.

    Article  Google Scholar 

  7. Djafri, K., Challal, M., Azrar, A., Dehmas, M., Aksas, R., & Mouhouche, F. (2018). Compact dual-band fractal hexagonal ring monopole antenna for RFID and GSM applications. Microwave and Optical Technology Letters, 60, 2656–2659. https://doi.org/10.1002/mop.31497.

    Article  Google Scholar 

  8. Goswami, C., Ghatak, R., & Poddar, D. R. (2017). Multi-band bisected Hilbert monopole antenna loaded with multiple subwavelength split-ring resonators. IET Microwave Antenna and Propagation., 12, 1719–1727. https://doi.org/10.1049/iet-map.2017.1215.

    Article  Google Scholar 

  9. Oraizi, H. & Hedayati S. (2012). Miniaturization of microstrip antennas by the novel application of the giuseppe peano fractal geometries. IEEE Transaction on Antenna Propagation, 60, 3559–3567. https://doi.org/10.1109/TAP.2012.2201070.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Y. (2017). Wang Z andLi J (2017) UHF moore fractal antennas for online GIS PD detection. IEEE Antennas and Wireless Propagation Letters, 16, 852–855. https://doi.org/10.1109/LAWP.2016.2609916.

    Article  Google Scholar 

  11. Chaimool, S., Chokchai, C., & Akkaraekthalin, P. (2012). Multiband loaded fractal loop monopole antenna for USB dongle applications. Electronics Letters, 48, 1446–1447. https://doi.org/10.1049/el.2012.2665.

    Article  Google Scholar 

  12. He, Y., Li, L., Zhai, H., Dang, X., Liang, C., & Liu, Q. H. (2010). Sierpinski Space-filling curves and their application in high-speed circuits for ultrawideband SSN suppression. IEEE Antennas and Wireless Propagation Letters, 9, 568–571. https://doi.org/10.1109/LAWP.2010.2052584.

    Article  Google Scholar 

  13. Bangi, I. S., & Sivia, J. S. M. (2019). Minkowski and Koch curves based hybrid fractal antenna for multiband applications. Wireless Personal Communications, 108, 2435–2448. https://doi.org/10.1007/s11277-019-06531-7.

    Article  Google Scholar 

  14. Karimbu, V. A., Khawaja, B. A., Khan, I., & Mustaqim, M. (2017). Dual-band Minkowski-Sierpinski fractal antenna for next generation satellite communications and wireless body area networks. Microwave and Optical Technology Letters, 60, 171–178. https://doi.org/10.1002/mop.30931.

    Article  Google Scholar 

  15. Sharma, N., & Bhatia, S. S. (2018). Split ring resonator based multiband hybrid fractal antennas for wireless applications. AEU-International Journal of Electronics and Communications, 93, 39–52. https://doi.org/10.1016/j.aeue.2018.05.035.

    Article  Google Scholar 

  16. Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using meander and Minkowski curves for wireless applications. Wireless Personal Communications, 109, 1471–1490. https://doi.org/10.1007/s11277-019-06622-5.

    Article  Google Scholar 

  17. Yu, Z., Yu, J., Ran, X., & Zhu, C. (2017). A novel Koch and Sierpinski combined fractal antenna for 2G/3G/4G/5G/WLAN/navigation applications. Microwave and Optical Technology Letters, 59, 2147–2155.

    Article  Google Scholar 

  18. Kakkar, S., Kamal, T. S., & Singh, A. P. (2018). On the design and analysis of i-shaped fractal antenna for emergency management. IETE Journal of Research., 65(1), 1–11. https://doi.org/10.1080/03772063.2017.1407270.

    Article  Google Scholar 

  19. Lizzi, L., Azaro, R., Oliveri, G., & Massa, A. (2012). Multiband fractal antenna for wireless communication systems for emergency management. Journal of Electromagnetic Waves and Applications., 26, 1–11. https://doi.org/10.1163/156939312798954865.

    Article  Google Scholar 

  20. Singh, G., & Singh, A. P. (2018). On the design of planar antenna using Fibonacci word fractal geometry in support of public safety. International Journal of RF and Microwave Computer-Aided Engineering., 29(2), e21554. https://doi.org/10.1002/mmce.21554.

    Article  MathSciNet  Google Scholar 

  21. ANSYS High Frequency Structure Simulator (HFSS).https://www.ansys.com.

  22. Balanis, C. A. (2013). Antenna theory analysis and design (3rd ed.). Hoboken, New Jersey: Wiley.

    Google Scholar 

  23. Falconer, K. (2003). Fractal geometry: Mathematical foundations and applications. Chichester, UK: Wiley.

    Book  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial support provided by The Institution of Engineers (India) for carrying out Research & Development work in this subject. Also, the authors wish to thank the Mepco-Agilent R&D Centre of Excellence in RF Circuit and Antenna Design, Mepco Schlenk Engineering College, Sivakasi for providing antenna measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulkani Iyampalam.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyampalam, P., Ganesan, I. Design of Sierpinski Knopp Inspired Fractal Antenna for Public Safety Applications. Wireless Pers Commun 114, 227–239 (2020). https://doi.org/10.1007/s11277-020-07360-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07360-9

Keywords

Navigation