Skip to main content
Log in

The Research of Slot Adaptive 4D Network Clustering Algorithm Based on UAV Autonomous Formation and Reconfiguration

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Being independent of any fixed equipment, Ad Hoc wireless sensor networks, a kind of acentric and self-organized wireless network, possesses some features such as easiness of deployment, strong invulnerability and flexibility of networking, which leads to a promising application prospect in terms of UAV military and civilian use. This paper proposes a new slot adaptive 4D network clustering algorithm based on UAV autonomous formation and reconfiguration to solve the problem of UAV Ad Hoc network such as networking confusion, poor network reconstruction performance, huge energy consumption and other issues. The algorithm can optimize the topology of UAVs network. We build the network topology and generate clustering network by the slot adaptive 4D network clustering algorithm in Matlab. According to the real combat of UAV, four states are simulated and analyzed. The simulation results validate the feasibility of the slot adaptive 4D network clustering algorithm. The clustering structure generated by the slot adaptive 4D network clustering algorithm is robust and the algorithm is suitable for the UAV group operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Huang, Y. M., Hsieh, M. Y., Chao, H. C., Hung, S. H., & Park, J. H. (2009). Pervasive, secure access to a hierarchical-based healthcare monitoring architecture in wireless heterogeneous sensor networks. IEEE Journal on Selected Areas in Communications, 27(4), 400–411.

    Google Scholar 

  2. Junnila, S., Kailanto, H., Merilahti, J., Vainio, A. M., Vehkaoja, A., Zakrzewski, M., et al. (2010). Wireless, multipurpose in-home health monitoring platform: Two case trials. IEEE Transactions on Information Technology in Biomedicine A Publication of the IEEE Engineering in Medicine & Biology Society, 14(2), 447–455.

    Google Scholar 

  3. Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2013). Performance evaluation of heterogeneous wireless sensor networks for forest fire detection. In Signal Processing and Communications Applications Conference (pp. 1–4). IEEE.

  4. Kadri, A., Yaacoub, E., Mushtaha, M., & Abu-Dayya, A. (2013). Wireless sensor network for real-time air pollution monitoring. In International conference on communications, signal processing, and their applications (pp. 1–5). IEEE.

  5. Resquin, F., Guevara, J., Cardozo, C., Santacruz, C., & Brunetti, F. (2011). A low power routing and topology control protocol for cluster-based environmental wireless sensor networks: The FLORA project case. In IEEE eighth international conference on mobile ad-hoc and sensor systems (pp. 132–134). IEEE Computer Society.

  6. Chen, G., Meng, Q., & Zhang, L. (2014). Chain-type wireless sensor network node scheduling strategy. Journal of Systems Engineering and Electronics, 25(2), 203–210.

    Google Scholar 

  7. Chen, M., Cao, H., Zhang, Y., & Vuong, S. T. (2013). Enabling low bit-rate and reliable video surveillance over practical wireless sensor network. The Journal of Supercomputing, 65(1), 287–300.

    Google Scholar 

  8. Dohare, Y. S., Maity, T., Paul, P. S., & Das, P. S. (2014). Design of surveillance and safety system for underground coal mines based on low power WSN. In International conference on signal propagation and computer technology (pp. 116–119). IEEE.

  9. Gruden, M., Jobs, M., & Rydberg, A. (2014). Empirical tests of wireless sensor network in jet engine including characterization of radio wave propagation and fading. IEEE Antennas and Wireless Propagation Letters, 13(13), 762–765.

    Google Scholar 

  10. Wang, X., Wei, X., & Wang, H. (2012). Network centric warfare analysis of US Army. Advances in information technology and industry applications. Berlin: Springer.

    Google Scholar 

  11. Frew, E. W., & Brown, T. X. (2008). Airborne communication networks for small unmanned aircraft systems. Proceedings of the IEEE, 96(12), 2008–2027.

    Google Scholar 

  12. Shirani, R., St-Hilaire, M., Kunz, T., & Zhou, Y. (2012). Combined reactive-geographic routing for unmanned aeronautical ad-hoc networks. In International wireless communications and mobile computing conference (Vol. 26, pp. 820–826). IEEE.

  13. Mazaheri, M., Kavian, Y. S., Sharif, H., & Rashvand, H. F. (2016). Low end-to-end delay fuzzy networking protocol for mobile wireless sensing. Wireless Communications & Mobile Computing, 16(15), 2406–2418.

    Google Scholar 

  14. Zhang, B., Jiao, Z., Li, C., Yao, Z., & Vasilakos, A. V. (2016). Efficient location-based topology control algorithms for wireless ad hoc and sensor networks. Wireless Communications & Mobile Computing, 16(14), 1943–1955.

    Google Scholar 

  15. Jia, X. U., Qian-Mu, L. I., Wang, Y. L., & Liu, F. Y. (2010). A path compression technique based on dynamic model in ad-hoc demand routing protocols. Acta Armamentarii, 31(6), 811–819.

    Google Scholar 

  16. Chen, D. S., Liu, Z. G., & Wang, G. X. (2007). A clustering algorithm based on node location in the mobile ad-hoc network management. Acta Armamentarii, 14(1), 132–138.

    Google Scholar 

  17. Kong, J., Luo, H., Xu, K., Gu, D. L., Gerla, M., & Lu, S. (2010). Adaptive security for multilevel ad hoc networks. Wireless Communications & Mobile Computing, 2(5), 533–547.

    Google Scholar 

  18. Liu, G., & Yao, G. (2012). E-MAC: An event-driven data aggregation MAC protocol for wireless sensor networks. In Consumer communications and networking conference (pp. 941–946). IEEE.

  19. Nandi, S., & Yadav, A. (2011). Adaptation of MAC Layer for QoS in WSN. Trends in Network and Communications. Berlin: Springer.

    Google Scholar 

  20. Karimoddini, A., Lin, H., Chen, B. M., & Tong, H. L. (2013). Hybrid three-dimensional formation control for unmanned helicopters. Automatica, 49(2), 424–433.

    MathSciNet  MATH  Google Scholar 

  21. Innocenti, M., Pollini, L., & Giulietti, F. (2004). Management of communication failures in formation flight. Journal of Aerospace Computing Information & Communication, 1(1), 19–35.

    Google Scholar 

  22. Rezaee, H., & Abdollahi, F. (2013). Motion synchronization in unmanned aircrafts formation control with communication delays. Communications in Nonlinear Science and Numerical Simulation, 18(3), 744–756.

    MathSciNet  MATH  Google Scholar 

  23. Triplett, B. I., Klein, D. J., & Morgansen, K. A. (2009). Cooperative estimation for coordinated target tracking in a cluttered environment. Mobile Networks and Applications, 14(3), 336–349.

    Google Scholar 

  24. Li, S., Zhang, Y., & Zhu, Q. (2005). Nash-optimization enhanced distributed model predictive control applied to the Shell benchmark problem. Amsterdam: Elsevier.

    MATH  Google Scholar 

  25. Dennis-Escoffier, S. (2010). Experimental test of a robust formation controller for marine unmanned surface vessels. Autonomous Robots, 28(2), 213–230.

    Google Scholar 

  26. Sun, H., Zhou, R., Zou, L., & Ding, Q. (2011). Distributed cooperation target tracking for heterogeneous multi-UAV under communication and measurement constraints. Acta Aeronautica Et Astronautica Sinica, 32(2), 299–310.

    Google Scholar 

  27. Zhang, X. Q., Huang, Y. Q., & Liu, G. (2010). Research on improved leader-following formation method. Computer Engineering & Design, 31(11), 2547–2549.

    Google Scholar 

  28. Giulietti, F., Pollini, L., & Innocenti, M. (2002). Autonomous formation flight. IEEE Control Systems, 20(6), 34–44.

    Google Scholar 

  29. Changjian, R., Wei, R., Dai, J., Shen, D., Lipeng, Z., et al. (2013). Autonomous reconfiguration control method for uav s formation based on nash bargain. Acta Automatica Sinica, 39(8), 1349–1359.

    MathSciNet  Google Scholar 

  30. Wei, R. X., Chang-Jian, R. U., & Xiao-Ming, Q. I. (2013). Autonomous safety control of unmanned aerial vehicle formation reconfiguration under communication delay. Control Theory & Applications, 30(9), 1009–1108.

    Google Scholar 

  31. Hongyi, Y. U. (2015). Wireless mobile ad-hoc network. Beijing: Posts & Telecom Press.

    Google Scholar 

  32. Jin-long, W. A. N. G., & Cheng-gui, W. A. N. G. (2004). Ad hoc mobile wireless networks. Beijing: National Defense Industry Press.

    Google Scholar 

  33. Shao-ren, Z., Hai-tao, W., & Zhi-feng, Z. (2015). Ad hoc network technology. Beijing: Posts and Telecom Press.

    Google Scholar 

  34. Frew, E. W., & Brown, T. X. (2009). Networking issues for small unmanned aircraft systems. Journal of Intelligent and Robotic Systems, 54(1), 21–37.

    Google Scholar 

  35. Shirani, R., St-Hilaire, M., Kunz, T., & Zhou, Y. (2011). The performance of greedy geographic forwarding in unmanned aeronautical ad-hoc networks. In Ninth communication networks and services research conference (pp. 161–166). IEEE Computer Society.

  36. Li, P., & Lu, L. (2012). The method of coordinate transformation on arcgis. Urban Geotechnical Investigation & Surveying, (1), 87–90.

  37. Lei, X., & Li, J. (2012). An adaptive altitude information fusion method for autonomous landing processes of small unmanned aerial rotorcraft. Sensors, 12(10), 13212.

    Google Scholar 

  38. Bergamo, P., & Mazzini, G. (2002). Localization in sensor networks with fading and mobility. In The IEEE international symposium on personal, indoor and mobile radio communications (Vol. 2, pp. 750–754). IEEE.

  39. Savarese, C., Rabaey, J. M., & Langendoen, K. (2002). Robust positioning algorithms for distributed ad-hoc wireless sensor networks. In General track of the conference on usenix technical conference (pp. 317–327). USENIX Association.

Download references

Acknowledgments

The research is supported by the State Key Laboratory of Mechatronics Engineering and Control and sponsored by National Project (No. B3320132011), both awarded to Dr. Wenzhong Lou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin.

Ethics declarations

Conflicts of interest

Regarding the publication of this paper, the authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Lou, W., Wang, J. et al. The Research of Slot Adaptive 4D Network Clustering Algorithm Based on UAV Autonomous Formation and Reconfiguration. Wireless Pers Commun 114, 1635–1667 (2020). https://doi.org/10.1007/s11277-020-07444-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07444-6

Keywords

Navigation