Skip to main content
Log in

Proposed Model for Radio Wave Attenuation due to Rain (RWAR)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

A Correction to this article was published on 15 March 2021

This article has been updated

Abstract

Radio wave attenuation is primarily caused by the absorption of a radio signals by some atmospheric phenomenon like rain, snow or ice, clouds, dust etc. These losses are more prevalent in the frequency ranges above 10 GHz. Attenuation caused by rain is not only limited to satellite up-link and down-link but it can also affect the point-to-point terrestrial microwave links above 10 GHz. This paper briefly discussed about the work done by researchers at different parts of the world regarding the attenuation caused by the rain for higher frequencies. It then proposes a mathematical model for prediction of radio wave attenuation due to rain. The implementation results of proposed model were also compared with the ITU-R model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

References

  1. ITU-R. (2007). Propagation data and prediction methods required for the design of earth–space telecommunication system. Recommendation ITU-R P.618-9.

  2. Chakravarty, K., & Maitra, A. (2010). Rain attenuation studies over an earth–space path at a tropical location. Journal of Atmospheric and Solar-Terrestrial Physics, 72(1), 135–138.

    Article  Google Scholar 

  3. Paulson, K. S., & Gibbins, C. J. (2000). Rain models for the prediction of fade durations at millimetre wavelengths. IEE Proceedings-Microwaves, Antennas and Propagation, 147(6), 431–436.

    Article  Google Scholar 

  4. Ulaganathen, K., et al. (2011). Comparative studies of the rain attenuation predictions for tropical regions. Progress in Electromagnetics Research, 18, 17–30.

    Article  Google Scholar 

  5. Tamošiūnaitė, M., et al. (2010). Prediction of electromagnetic waves attenuation due to rain in the localities of Lithuania. Elektronika ir Elektrotechnika, 105(9), 9–12.

    Google Scholar 

  6. Semire, F. A., et al. (2012). Analysis of cumulative distribution function of 2-year rainfall measurements in Ogbomoso, Nigeria. International Journal of Applied Science and Engineering, 10(3), 171–179.

    Google Scholar 

  7. Van de Kamp, M. M. J. L. (2003). Statistical analysis of rain fade slope. IEEE Transactions on Antennas and Propagation, 51(8), 1750–1759.

    Article  Google Scholar 

  8. Obiyemi, O. O., Afullo, T. J., & Ibiyemi, T. S. (2014). Equivalent 1-min rain rate statistics and seasonal fade estimates in the microwave band for south-western Nigeria. International Journal of Scientific & Engineering Research, 5(1), 239–244.

    Google Scholar 

  9. Das, S., Maitra, A., & Shukla, A. (2010). Rain attenuation modeling in the 10–100 GHz frequency using drop size distributions for different climatic zones in tropical India. Progress in Electromagnetics Research, 25, 211–224.

    Article  Google Scholar 

  10. Ulaganathen, K., et al. (2014). Monthly and diurnal variability of rain rate and rain attenuation during the monsoon period in Malaysia. Radioengineering, 23(2), 754–757.

    Google Scholar 

  11. Sheng, N., et al. (2016). Study of parabolic equation method for millimeter-wave attenuation in complex meteorological environments. Progress in Electromagnetics Research, 48, 173–181.

    Article  Google Scholar 

  12. Le, H. V., et al. (2013). Localized rain effects observed in Tokyo Tech millimeter-wave model network. In Proceedings of 2013 URSI international symposium on electromagnetic theory (EMTS). IEEE.

  13. Mandeep, J. S. (2011). Comparison of rain rate models for equatorial climate in South East Asia. Geofizika, 28(2), 265–274.

    Google Scholar 

  14. Åsen, W., & Gibbins, C. J. (2002). A comparison of rain attenuation and drop size distributions measured in Chilbolton and Singapore. Radio Science, 37(3), 1–6.

    Article  Google Scholar 

  15. Timms, G., Kvicera, V., & Grabner, M. (2005). 60 GHz band propagation experiments on terrestrial paths in Sydney and Praha. RADIOENGINEERING-PRAGUE-, 14(4), 27.

    Google Scholar 

  16. Kvicera, V., & Grabner, M. (2010). Rain attenuation on terrestrial wireless links in the mm frequency bands. In M. Mukherjee (Eds.), Advanced microwave and millimeter wave technologies semiconductor devices circuits and systems. ISBN: 978-953-307-031-5.

  17. Capsoni, C., et al. (2009). A new prediction model of rain attenuation that separately accounts for stratiform and convective rain. IEEE Transactions on Antennas and Propagation, 57(1), 196–204.

    Article  Google Scholar 

  18. Garcia-del-Pino, P., Riera, J. M., & Benarroch, A. (2012). Tropospheric scintillation with concurrent rain attenuation at 50 GHz in Madrid. IEEE Transactions on Antennas and Propagation, 60(3), 1578–1583.

    Article  Google Scholar 

  19. Odedina, M. O., & Afullo, T. J. (2009). Analytical modeling of rain attenuation and its application to terrestrial LOS links. In Southern Africa telecommunication networks and application conference (SATNAC).

  20. Sujimol, M. R., Acharya, R., & Shahana, K. (2019). Prediction and estimation of rain attenuation of Ka-band signals. In 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC) (pp. 1). IEEE.

  21. Mishra, M. K., Renju, R., Mathew, N., Raju, C. S., Sujimol, M. R., & Shahana, K. (2019). Rain attenuation of Ka-band signal over a tropical station. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–3). IEEE.

  22. De, A., & Maitra, A. (2019). Radiometric measurements of Ka-band attenuation during rain events at a tropical location. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–4). IEEE.

  23. Nandi, D., & Maitra, A. (2019). The effects of rain on millimeter wave communication for tropical region. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–3). IEEE.

  24. Verma, A. K., Nandan, R., & Verma, M. A. (2019). Rain drop size distribution and variability of specific rain attenuation for Indian Climate. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–4). IEEE.

  25. Han, C., & Duan, S. (2019). The study on characteristics of rain attenuation along 28 GHz and 38 GHz line-of-sight millimeter-wave links. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–3). IEEE.

  26. Huang, J., Cao, Y., Raimundo, X., Cheema, A., & Salous, S. (2019). Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links. IEEE Access, 7, 156110–156120.

    Article  Google Scholar 

  27. Khuba, S. K., Agarwal, K., & Ratnakara, K. (2019). An innovative approach to interference geolocation using rain fade. In 2019 URSI Asia-Pacific radio science conference (AP-RASC) (pp. 1–3). IEEE.

  28. Shrestha, S., & Choi, D. Y. (2019). Rain attenuation study over an 18 GHz terrestrial microwave link in South Korea. International Journal of Antennas and Propagation, 2019(1–16), 1712791.

    Google Scholar 

  29. Igwe, K. C., Oyedum, O. D., Ajewole, M. O., & Aibinu, A. M. (2019). Evaluation of some rain attenuation prediction models for satellite communication at Ku and Ka bands. Journal of Atmospheric and Solar-Terrestrial Physics, 188, 52–61.

    Article  Google Scholar 

  30. Semire, F. A., Mohd-Mokhtar, R., & Akanbi, I. A. (2019). Validation of new ITU-R rain attenuation prediction model over Malaysia equatorial region. MAPAN, 34(1), 71–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article has been revised: The fourth author’s name has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Kumar, V., Saxena, K. et al. Proposed Model for Radio Wave Attenuation due to Rain (RWAR). Wireless Pers Commun 115, 791–807 (2020). https://doi.org/10.1007/s11277-020-07598-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07598-3

Keywords

Navigation