Skip to main content
Log in

Modeling and Analyzing of Millimeter Wave Heterogeneous Cellular Networks by Poisson Hole Process

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel Poisson hole process (PHP) modeling of wireless networks is proposed. Contrary to the prior PHP models with circular-shaped holes, we utilized circular sector holes in a random direction to capture the spatial separation between tiers in a millimeter wave (mmWave) heterogeneous cellular network (HCN). In this case, small cell base stations and macrocell base stations are distributed as a PHP and Poisson point process (PPP). Using tools from stochastic geometry, we derive approximate analytical expressions by regarding the effect of one or several holes on coverage probability. Simulation results reveal that compared to conventional PPP-modeling of HCNs, the proposed approaches can provide about 2–3 dB more accurate analysis in terms of signal-to-interference-and-noise ratio coverage probability. Moreover, some interesting insights about the effect of holes on coverage probability and the relation between proposed hole configuration and prior models with circular holes is discovered. It turns out that the analysis based on the proposed PHP model can provide a more general study than prior works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098.

    Article  Google Scholar 

  2. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349. https://doi.org/10.1109/ACCESS.2013.2260813.

    Article  Google Scholar 

  3. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385. https://doi.org/10.1109/JPROC.2014.2299397.

    Article  Google Scholar 

  4. Ibrahim, A., Abdullah, M., & Gismalla, M. (2018). Basic of 5G networks. In A. Bagwari, G. S. Tomar, & J. Bagwari (Eds.), Advanced wireless sensing techniques for 5G networks (pp. 19–44). Boca Raton: Chapman and Hall/CRC.

    Chapter  Google Scholar 

  5. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134. https://doi.org/10.1109/TCOMM.2011.100411.100541.

    Article  Google Scholar 

  6. Akoum, S., Ayach, O. E., & Heath, R. W. (2012). Coverage and capacity in mmwave cellular systems. In 2012 conference record of the forty sixth asilomar conference on signals, systems and computers (ASILOMAR) (pp. 688–692). https://doi.org/10.1109/ACSSC.2012.6489099.

  7. Bai, T., & Heath, R. W. (2015). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114. https://doi.org/10.1109/TWC.2014.2364267.

    Article  Google Scholar 

  8. Singh, S., Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2015). Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications, 33(10), 2196–2211. https://doi.org/10.1109/JSAC.2015.2435357.

    Article  Google Scholar 

  9. Gao, Y., Yang, S., Wu, S., Wang, M., & Song, X. (2019). Coverage probability analysis for mmwave communication network with ABSF-based interference management by stochastic geometry. IEEE Access, 7, 133572–133582. https://doi.org/10.1109/ACCESS.2019.2940537.

    Article  Google Scholar 

  10. Onireti, O., Imran, A., & Imran, M. A. (2018). Coverage, capacity, and energy efficiency analysis in the uplink of mmwave cellular networks. IEEE Transactions on Vehicular Technology, 67(5), 3982–3997. https://doi.org/10.1109/TVT.2017.2775520.

    Article  Google Scholar 

  11. Dhillon, H. S., Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560. https://doi.org/10.1109/JSAC.2012.120405.

    Article  Google Scholar 

  12. Dhillon, H. S., Ganti, R. K., & Andrews, J. G. (2011). A tractable framework for coverage and outage in heterogeneous cellular networks. In 2011 information theory and applications workshop (pp. 1–6). https://doi.org/10.1109/ITA.2011.5743604.

  13. Jo, H. S., Sang, Y. J., Xia, P., & Andrews, J. G. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11(10), 3484–3495. https://doi.org/10.1109/TWC.2012.081612.111361.

    Article  Google Scholar 

  14. Turgut, E., & Gursoy, M. C. (2017). Coverage in heterogeneous downlink millimeter wave cellular networks. IEEE Transactions on Communications,. https://doi.org/10.1109/TCOMM.2017.2705692.

    Article  Google Scholar 

  15. Papazafeiropoulos, A., Ratnarajah, T., Kourtessis, P., & Chatzinotas, S. (2019). Nuts and bolts of a realistic stochastic geometric analysis of mmwave hetnets: Hardware impairments and channel aging. IEEE Transactions on Vehicular Technology, 68(6), 5657–5671. https://doi.org/10.1109/TVT.2019.2908044.

    Article  Google Scholar 

  16. Deng, N., Zhou, W., & Haenggi, M. (2015). Heterogeneous cellular network models with dependence. IEEE Journal on Selected Areas in Communications, 33(10), 2167–2181. https://doi.org/10.1109/JSAC.2015.2435471.

    Article  Google Scholar 

  17. Yazdanshenasan, Z., Dhillon, H. S., Afshang, M., & Chong, P. H. J. (2016). Poisson hole process: Theory and applications to wireless networks. IEEE Transactions on Wireless Communications, 15(11), 7531–7546. https://doi.org/10.1109/TWC.2016.2604799.

    Article  Google Scholar 

  18. Kishk, M. A., & Dhillon, H. S. (2017). Tight lower bounds on the contact distance distribution in Poisson hole process. IEEE Wireless Communications Letters, 6(4), 454–457. https://doi.org/10.1109/LWC.2017.2702706.

    Article  Google Scholar 

  19. Flint, I., Kong, H., Privault, N., Wang, P., & Niyato, D. (2017). Analysis of heterogeneous wireless networks using Poisson hard-core hole process. IEEE Transactions on Wireless Communications, 16(11), 7152–7167. https://doi.org/10.1109/TWC.2017.2740387.

    Article  Google Scholar 

  20. PanZiyu, Y., & BaoZiyong, H. (2018) Approximate coverage analysis of heterogeneous cellular networks modeled by Poisson hole process. In 2018 IEEE 18th international conference on communication technology (ICCT) (pp. 424–427). https://doi.org/10.1109/ICCT.2018.8599917

  21. Gismalla, M. S. M., & Abdullah, M. F. L. (2017). Device to device communication for internet of things ecosystem: An overview. International Journal of Integrated Engineering, 9(4).

  22. Sun, H., Wildemeersch, M., Sheng, M., & Quek, T. Q. S. (2015). D2D enhanced heterogeneous cellular networks with dynamic TDD. IEEE Transactions on Wireless Communications, 14(8), 4204–4218. https://doi.org/10.1109/TWC.2015.2418192.

    Article  Google Scholar 

  23. Lee, C., & Haenggi, M. (2012). Interference and outage in Poisson cognitive networks. IEEE Transactions on Wireless Communications, 11(4), 1392–1401. https://doi.org/10.1109/TWC.2012.021512.110131.

    Article  Google Scholar 

  24. Haenggi, M. (2012). Stochastic geometry for wireless networks (1st ed.). New York, NY: Cambridge University Press.

    Book  Google Scholar 

  25. Bai, T., Vaze, R., & Heath, R. W. (2014). Analysis of blockage effects on urban cellular networks. IEEE Transactions on Wireless Communications, 13(9), 5070–5083. https://doi.org/10.1109/TWC.2014.2331971.

    Article  Google Scholar 

  26. Ding, M., Wang, P., López-Pérez, D., Mao, G., & Lin, Z. (2016). Performance impact of LOS and NLOS transmissions in dense cellular networks. IEEE Transactions on Wireless Communications, 15(3), 2365–2380. https://doi.org/10.1109/TWC.2015.2503391.

    Article  Google Scholar 

  27. Renzo, M. D. (2015). Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. IEEE Transactions on Wireless Communications, 14(9), 5038–5057. https://doi.org/10.1109/TWC.2015.2431689.

    Article  Google Scholar 

  28. Zhang, X., & Andrews, J. G. (2015). Downlink cellular network analysis with multi-slope path loss models. IEEE Transactions on Communications, 63(5), 1881–1894. https://doi.org/10.1109/TCOMM.2015.2413412.

    Article  Google Scholar 

  29. Sattari, M., & Abbasfar, A. (2019). A novel PHP-based coverage analysis in millimeter wave heterogeneous cellular networks. In 2019 Iran workshop on communication and information theory (IWCIT) (pp. 1–6). https://doi.org/10.1109/IWCIT.2019.8731625.

Download references

Acknowledgements

A part of this paper has been presented in the 7th Iran Workshop on Communication and Information Theory (IWCIT), Sharif University of Technology, Tehran, Iran [29].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sattari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 1. Proof of Lemma 2

Based on the considered cell association rule, the typical UE is associated with a \(s\in \{LOS,NLOS\}\) BS in \(k{\mathrm{th}}\) tier if the following is satisfied

$$\begin{aligned} P_{k}G_{k}r_{k}^{-\alpha ^{s}}> & {} P_{j}G_{j}r_{j}^{-\alpha ^{s^{\prime }}} \overset{a}{=} P_{k}M_{k}M_{UE}r_{k}^{-\alpha ^{s}}> P_{j}M_{j}M_{UE}r_{j}^{-\alpha ^{s^{\prime }}}\nonumber \\= & {} P_{k}M_{k}r_{k}^{-\alpha ^{s}}> P_{j}M_{j}r_{j}^{-\alpha ^{s^{\prime }}} = r_{j}>(\frac{P_{j}}{P_{k}}\times \frac{M_{j}}{M_{k}})^{1/\alpha ^{s^{\prime }}}\times r_{k}^{\alpha ^{s}/\alpha ^{s^{\prime }}} \end{aligned}$$
(20)

where (a) follows by the serving link directivity gain assumption and \(j=1,2\), \(s^{\prime }\in \{LOS,NLOS\}\).

Let us denote the serving tier and LOS or NLOS state of BSs by T and S, respectively. The typical UE is associated with a \(s\in \{LOS,NLOS\}\) BS in \(k{\mathrm{th}}\) tier if and only if it has a \(s\in \{LOS,NLOS\}\) BS in that tier, and its nearest BS in \(k{\mathrm{th}}\) tier has smaller average power than that of the nearest \(s^{\prime }\ne s\) BS in \(k{\mathrm{th}}\) tier and the nearest \(s^{\prime }\in \{LOS,NLOS\}\) BS in \(j\ne k\) tier. Hence, it follows that

$$\begin{aligned}&Pr(T=k,S=s|r_{k}=x)\nonumber \\&\quad =Pr(r_{k}>x^{\alpha ^{s}/\alpha ^{s^{\prime }}} , s^{\prime } \ne s) Pr(r_{j}>R_{j}^{s^{\prime }}(x), j \ne k , s^{\prime } \in {\{LOS,NLOS\}} )\nonumber \\&\quad = exp(-\varLambda _{k,PHP}^{s^{\prime }}([0,x^{\alpha ^{s}/\alpha ^{s^{\prime }}}))) exp\left( - \sum _{s^{\prime }\in \{LOS,NLOS\}} \varLambda ^{s^{\prime }}_{j,PHP}([0,R_{j}^{s^{\prime }}(x) ))\right) \end{aligned}$$
(21)

Note that we approximate PHP distribution of SBSs as PPP with \(\lambda _{PHP}\). Therefore, \(A_{k}^{s}\) can be expressed as

$$\begin{aligned} A_{k}^{s}= & {} B_{k}^{s} Pr(T=k,S=s) = B_{k}^{s} \mathbb {E}_{x}[Pr(T=k,S=s|r_{k}=x)]\nonumber \\= & {} B_{k}^{s} \int _{0}^{\infty } exp(-\varLambda _{k,PHP}^{s^{\prime }}([0,x^{\alpha ^{s}/\alpha ^{s^{\prime }}})))\nonumber \\&exp(- \sum _{s^{\prime }\in \{LOS,NLOS\}} \varLambda ^{s^{\prime }}_{j,PHP}([0,R_{j}^{s{\prime }}(x) )) )f_{k}^{s}(r_{k}=x)dx \nonumber \\= & {} \int _{0}^{\infty } \varLambda ^{{\prime }s}_{k,PHP}([0,x))exp(-\sum _{j=1}^{2} \sum _{s^{\prime }\in \{LOS,NLOS\}}\varLambda ^{s{\prime }}_{j,PHP}([0,R_{j}^{s{\prime }}(x) )) ) dx \end{aligned}$$
(22)

1.2 2. Proof of Theorem 1

SINR coverage probability is

$$\begin{aligned} P_{C}=Pr(SINR>\tau _{k}) \overset{a}{=} \sum _{k=1}^{2} \sum _{s\in \{LOS,NLOS\}} A_{k}^{s}P_{C_{k}}^{s}(\tau _{k}) \end{aligned}$$
(23)

\(P_{C_{k}}^{s}(\tau _{k})\) is calculated as follow

$$\begin{aligned} P_{C_{k}}^{s}(\tau _{k})= & {} \,Pr(SINR>\tau _{k}\mid T=k , S=s)= \mathbb {E}_{x}[Pr(SINR>\tau _{k}\mid T=k , S=s,r_{k}=x)]\nonumber \\= & {} \int _{0}^{\infty } Pr(SINR>\tau _{k}\mid T = k , S=s,r_{k}=x)\times f(r_{k}=x\mid T=k , S=s)dx \end{aligned}$$
(24)

and \(f(r_{k}=x\mid T=k , S=s)\) is

$$\begin{aligned} f(r_{k}=x\mid T=k , S=s)&\overset{a}{=}&\frac{Pr(T=k , S=s ,\mid r_{k}=x) f^{s}({r_{k}}=x)}{Pr(T=k , S=s)}\nonumber \\&\overset{b}{=}&\frac{1}{A_{k}^{s}} \varLambda ^{{\prime }s}_{k,PHP}([0,x))exp\left( -\sum _{j=1}^{2} \sum _{s^{\prime }\in \{LOS,NLOS\}}\varLambda ^{s^{\prime }}_{j,PHP}([0,R_{j}^{s^{\prime }}(x) )\right) \end{aligned}$$
(25)

where (a) follows from the Bayes theorem and (b) from Eq. (21) in Appendix 1 . In order to complete our derivation for SINR coverage probability, we derive \(Pr(SINR>\tau _{k}\mid T = k , S=s,r_{k}=x)\). Using similar approach in [7], we have

$$\begin{aligned}&Pr(SINR>\tau _{k}\mid T = k , S=s,r_{k}=x)= Pr(SINR_{k}^{s}>\tau _{k}\mid r_{k}=x)\nonumber \\&\quad {\approx } \sum _{n=1}^{\upsilon ^{s}} (-1)^{n+1}\left( {\begin{array}{c}\upsilon ^{s}\\ n\end{array}}\right) \mathbb {E}[exp(-\mu _{k,n}^{s} \sigma ^{2})]L_{I}(\mu _{k,n}^{s}) \end{aligned}$$
(26)

where \(\mu _{k,n}^{s}\) was defined in Theorem 1. In order to calculate the Laplace transform of interferences \(L_{I}(\mu _{k,n}^{s})=\mathbb {E}[exp(-\mu _{k,n}^{s} I)]\), we define I as following

$$\begin{aligned} I= & {} \sum _{s^{\prime }\in {\{LOS,NLOS\}}} \sum _{i\in {\{\phi _{1}^{s^{\prime }}\} \backslash BS_{k,0}}} P_{1} |h_{1,i}|^{2} G_{1,i}r_{1,i}^{-\alpha ^{s^{\prime }}}\nonumber \\&+\sum _{s^{\prime }\in {\{LOS,NLOS\}}} \sum _{i\in {\{\psi ^{s^{\prime }}\} \backslash BS_{k,0}}} P_{2} |h_{2,i}|^{2} G_{2,i}r_{2,i}^{-\alpha ^{s^{\prime }}}\nonumber \\= & {} \sum _{j=1}^{2} \sum _{s^{\prime }\in {\{LOS,NLOS\}}} \sum _{i\in {\{\phi _{j}^{s^{\prime }}\} \backslash BS_{k,0}}} P_{j} |h_{j,i}|^{2} G_{j,i}r_{j,i}^{-\alpha ^{s^{\prime }}}\nonumber \\&- \sum _{s^{\prime }\in {\{LOS,NLOS\}}} \sum _{i\in {\{\phi _{2}^{s^{\prime }}\cap \psi ^{s^{{\prime }c}}\}}} P_{2} |h_{2,i}|^{2} G_{2,i}r_{2,i}^{-\alpha ^{s^{\prime }}} \end{aligned}$$
(27)

Let us denote

$$\begin{aligned} I_{H} = \sum _{s^{\prime }\in {\{LOS,NLOS\}}} \sum _{i\in {\{\phi _{2}^{s^{\prime }}\cap \psi ^{s^{{\prime }c}}\}}} P_{2} |h_{2,i}|^{2} G_{2,i}r_{2,i}^{-\alpha ^{s^{\prime }}} \end{aligned}$$
(28)

which represents the interference from SBSs of the baseline PPP \(\phi _{2}\) who are inside of holes.

Since in this approach, PHP distribution of SBSs (\(\psi\)) is approximated by the baseline PPP, \(\phi _{2}\), \(I_{H}=0\). Hence, similar to PPP-based approaches like [7]

$$\begin{aligned}&L_{I}(\mu _{k,n}^{s}) =\mathbb {E}\left[ exp\left( -\mu _{k,n}^{s} \left( \sum _{j=1}^{2} \sum _{s^{\prime }\in {\{LOS,NLOS\}}} \sum _{i\in {\{\phi _{j}^{s^{\prime }}\}}}P_{j} |h_{j,i}|^{2} G_{j,i}r_{j,i}^{-\alpha ^{s^{\prime }}}\right) \right) \right] \nonumber \\&\quad = \prod _{j=1}^{2} \prod _{s^{\prime }\in \{{LOS,NLOS}\}} exp\left( -\int _{R_{j}^{s^{\prime }}(x)}^{\infty } \left( 1- \mathbb {E}\left[ exp\left( -\mu _{k,n}^{s}P_{j} |h_{j}|^{2} G_{j}r^{-\alpha ^{s^{\prime }}}\right) \right] \right) \varLambda ^{{\prime }s{\prime }}_{j}([0,r)) dr\right) \end{aligned}$$
(29)

and \(\mathbb {E}[exp(-\mu _{k,n}^{s}P_{j} |h_{j}|^{2} G_{j}r^{-\alpha ^{s^{\prime }}})]\) is

$$\begin{aligned} \mathbb {E}[exp(-\mu _{k,n}^{s}P_{j} |h_{j}|^{2} G_{j}r^{-\alpha ^{s^{\prime }}})]&\overset{a}{=}&\sum _{g=1}^{4} P_{j,g}\mathbb {E}_{|h_{j}|^{2}}[exp(-\mu _{k,n}^{s}P_{j} |h_{j}|^{2} A_{j,g}r^{-\alpha ^{s^{\prime }}})]\nonumber \\&\overset{b}{=}&\sum _{g=1}^{4} P_{j,g} \left( \frac{1}{1+(\mu _{k,n}^{s}P_{j} A_{j,g}r^{-\alpha ^{s^{\prime }}})/\upsilon ^{s^{\prime }}}\right) ^{\upsilon ^{s^{\prime }}} \end{aligned}$$
(30)

where in (a) expectation are taken over \(G_{j}\), \(P_{j,g}\) and \(A_{j,g}\) are constants defined in Table 2, and step (b) follows from computing the moment generating function of the gamma distributed random variable \(|h_{j}|^{2}\). The integration range excludes a ball centered at 0 and radius \(R_{j}^{s^{\prime }}(x)=(\frac{P_{j}}{P_{k}}\times \frac{M_{j}}{M_{k}})^{1/\alpha ^{s^{\prime }}}\times x^{\alpha ^{s}/\alpha ^{s^{\prime }}}\) because the closest \(s^{\prime }\in \{LOS,NLOS\}\) interferer in \(j{\mathrm{th}}\) tier has to be farther than the serving BS, based on cell association rule considered. Finally, by combining the above equations, SINR coverage probability expression given in Theorem 1 is obtained.

1.3 3. Proof of Theorem 2

In the case of incorporating the serving hole, we follow the same approach used in Appendix 2 and Eqs. (23)–(26) are held in this proof too. It is enough to consider the effect of the serving hole in the interference characterization. Therefore, we approximate I as following, which incorporates the serving hole and ignore other holes

$$\begin{aligned} I= & {} \sum _{s^{\prime }\in {\{LOS,NLOS\}}} \bigg \{\sum _{i\in {\{\phi _{1}^{s^{\prime }}\} \backslash BS_{k,0}}} P_{1} |h_{1,i}|^{2} G_{1,i}r_{1,i}^{-\alpha ^{s^{\prime }}}\nonumber \\&+\sum _{i\in {\{\psi ^{s^{\prime }} \cap S^{c}(x,D,\theta _{c})\} \backslash BS_{k,0}}} P_{2} |h_{2,i}|^{2} G_{2,i}r_{2,i}^{-\alpha ^{s^{\prime }}}\bigg \} \end{aligned}$$
(31)

where \(S(x,D,\theta _{c})\) was defined in Definition 1 and x is the distance between the serving MBS and the typical UE. Now we calculate \(L_{I}(\mu _{k,n}^{s})\)

$$\begin{aligned}&L_{I}(\mu _{k,n}^{s})\nonumber \\&\quad =\mathbb {E}\left[ exp\left( -\mu _{k,n}^{s} \left( \sum _{s^{\prime }\in {\{LOS,NLOS\}}} \sum _{i\in {\{\phi _{1}^{s^{\prime }}\}\backslash BS_{k,0}}} P_{1} |h_{1,i}|^{2} G_{1,i}r_{1,i}^{-\alpha ^{s^{\prime }}} \right. \right. \right. \nonumber \\&\qquad \left. \left. \left. +\sum _{s^{\prime }\in {\{LOS,NLOS\}}} \sum _{i\in {\{\psi ^{s^{\prime }} \cap S^{c}(x,D,\theta _{c})\} \backslash BS_{k,0}}}P_{2} |h_{2,i}|^{2} G_{2,i}r_{2,i}^{-\alpha ^{s^{\prime }}}\right) \right) \right] \nonumber \\&\quad \overset{a}{=} \prod _{s^{\prime }\in \{{LOS,NLOS}\}} \mathbb {E}\left[ \prod _{i\in {\{\phi _{1}^{s^{\prime }}\} \backslash BS_{k,0}}} exp(-\mu _{k,n}^{s}P_{1} |h_{1,i}|^{2} G_{1,i}r_{1,i}^{-\alpha ^{s^{\prime }}})\right] \nonumber \\&\qquad \prod _{s^{\prime }\in \{{LOS,NLOS}\}} \mathbb {E}\left[ \prod _{i\in {\{\psi ^{s^{\prime }} \cap S^{c}(x,D,\theta _{c})\} \backslash BS_{k,0}}} exp(-\mu _{k,n}^{s}P_{2} |h_{2,i}|^{2} G_{2,i}r_{2,i}^{-\alpha ^{s^{\prime }}})\right] \nonumber \\&\quad \overset{b}{=} \prod _{s^{\prime }\in \{{LOS,NLOS}\}} exp\left( -\lambda _{1}\int _{\mathbb {R}^2\backslash B(0,R_{1}^{s^{\prime }}(x))} ( 1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{1} |h_{1}|^{2} G_{1}r^{-\alpha ^{s^{\prime }}})]) P^{s^{\prime }}(r) dS\right) \nonumber \\&\qquad \prod _{s^{\prime }\in \{{LOS,NLOS}\}} exp\left( -\lambda _{2}\left( \int _{\mathbb {R}^2\backslash B(0,R_{2}^{s^{\prime }}(x))} ( 1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})] ) P^{s^{\prime }}(r) dS \right. \right. \nonumber \\&\qquad \left. \left. - \int _{\Xi }(1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})]) P^{s^{\prime }}(r) dS\right) \right) \nonumber \\&\quad = \prod _{s^{\prime }\in \{{LOS,NLOS}\}} exp\left( -\int _{R_{1}^{s^{\prime }}(x)}^{\infty } ( 1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{1} |h_{1}|^{2} G_{1}r^{-\alpha ^{s^{\prime }}})] ) \varLambda ^{{\prime }s{\prime }}_{1}([0,r) dr\right) \nonumber \\&\qquad \prod _{s^{\prime }\in \{{LOS,NLOS}\}} exp\left( -\int _{R_{2}^{s^{\prime }}(x)}^{\infty }( 1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})] ) \varLambda ^{{\prime }s{\prime }}_{2}([0,r) dr\right) \nonumber \\&\qquad \prod _{s^{\prime }\in \{{LOS,NLOS}\}} exp\left( \lambda _{2} \int _{\Xi }(1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})]) P^{s^{\prime }}(r) dS\right) \nonumber \\&\quad =\prod _{j=1}^{2} \prod _{s^{\prime }\in \{{LOS,NLOS}\}} exp\left( -\int _{R_{j}^{s^{\prime }}(x)}^{\infty } ( 1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{j} |h_{j}|^{2} G_{j}r^{-\alpha ^{s^{\prime }}})] ) \varLambda ^{{\prime }s{\prime }}_{j}([0,r) dr\right) \nonumber \\&\qquad \prod _{s^{\prime }\in \{{LOS,NLOS}\}} exp\left( \lambda _{2} \int _{\Xi }(1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})]) P^{s^{\prime }}(r) dS\right) \end{aligned}$$
(32)

where (a) is due to the independence assumption among tiers and LOS/NLOS BSs in each tier and (b) follows from the PGFL of a PPP. \(\Xi = S(x,D,\theta _{c})\bigcap B^{c}(0,R_{2}^{s^{\prime }}(x))\) and \(B^{c}(0,R_{2}^{s^{\prime }}(x))\) represent regions that are outside of a ball centered at the origin with radius \(R_{2}^{s^{\prime }}(x) = (\frac{P_{2}}{P_{k}}\times \frac{M_{2}}{M_{k}})^{1/\alpha ^{s^{\prime }}}\times x^{\alpha ^{s}/\alpha ^{s^{\prime }}}\).

Fig. 11
figure 11

Illustration of the effect of a hole in the interference characterization

Next, we need to calculate \(\int _{\Xi } (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})]) P^{s^{\prime }}(r) dS\). For this, we use transformation as below

$$\begin{aligned} r=\sqrt{u^{2}+x^{2}-2uxcos(\phi )} \end{aligned}$$
(33)

where the above equation is derived based on cosine-law, u and \(\phi\) is defined in Fig. 11.

Following discussion in Remark 2, we approximate

\(\Xi\) to \(S(x,D,\theta _{c})\). So, \(\int _{ \Xi } (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})]) P^{s^{\prime }}(r) dS\) is

$$\begin{aligned}&\int _{\Xi } (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})]) P^{s^{\prime }}(r) dS)\nonumber \\&\quad \approx \int _{t}^{t+\theta _{c}} \int _{0}^{D} (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{j} |h_{2}|^{2} G_{2}(u^{2}+x^{2}-2uxcos(\phi ))^{-\alpha ^{s^{\prime }}/2})])\nonumber \\&\qquad P^{s^{\prime }}(\sqrt{u^{2}+x^{2}-2uxcos(\phi )}) udud\phi ) \end{aligned}$$
(34)

Since the direction of circular sectors have a uniform distribution in \([0,2\pi )\), we have

$$\begin{aligned}&\int _{\Xi } (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s^{\prime }}})]) P^{s^{\prime }}(r) dS)\nonumber \\&\quad \approx \int _{0}^{2\pi } \int _{t}^{t+\theta _{c}} \int _{0}^{D} (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{j} |h_{2}|^{2} G_{2}(u^{2}+x^{2}-2uxcos(\phi ))^{-\alpha ^{s^{\prime }}/2})])\nonumber \\&\qquad P^{s^{\prime }}(\sqrt{u^{2}+x^{2}-2uxcos(\phi )}) \frac{1}{2\pi } udud\phi dt)\nonumber \\&\quad \overset{a}{=} \frac{\theta _{c}}{2\pi } \int _{0}^{2\pi } \int _{0}^{D} (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{j} |h_{2}|^{2} G_{2}(u^{2}+x^{2}-2uxcos(\phi ))^{-\alpha ^{s^{\prime }}/2})])\nonumber \\&\qquad P^{s^{\prime }}(\sqrt{u^{2}+x^{2}-2uxcos(\phi )}) udud\phi ) \end{aligned}$$
(35)

where (a) is derived by substituting integrals and using this fact that integrand function is periodic respect to \(\phi\) with period \(2\pi\). The above two-fold integral represents area of circular hole. Compring results derived in [17] for circular holes and using similar approach in Eq. (30) to derive \(\mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}(u^{2}+x^{2}-2uxcos(\phi ))^{-\alpha ^{s^{\prime }}/2})]\), this integral can be expressed as follow

$$\begin{aligned} \int _{x-D}^{x+D} F(\upsilon ^{s^{\prime }} , \frac{\mu _{k,n}^{s} P_{2}A_{2,g}u^{-\alpha ^{s^{\prime }}} }{\upsilon ^{s^{\prime }}}) 2\pi \lambda (u) P^{s'}(u) udu \end{aligned}$$
(36)

where \(\lambda (u)\) is defined in Theorem 2. Therefore, SINR coverage probability by incorporating serving hole can be expressed as Theorem 2.

1.4 4. Proof of Theorem 3

Similar to the proof used in Appendix 3, the approximation of the interference in this case is

$$\begin{aligned} I= \sum _{s'\in {\{LOS,NLOS\}}} \bigg \{\sum _{i\in {\{\phi _{1}^{s'}\} \backslash BS_{k,0}}} P_{1} |h_{1,i}|^{2} G_{1,i}r_{1,i}^{-\alpha ^{s'}} + \sum _{i\in {\{\psi ^{s'} \cap \Omega ^{c}\} \backslash BS_{k,0}}} P_{2} |h_{2,i}|^{2} G_{2,i}r_{2,i}^{-\alpha ^{s'}}\bigg \} \end{aligned}$$
(37)

where \(\Omega = \bigcup _{ s^{\prime \prime }\in {\{LOS,NLOS\}} } S(y,D,\theta _{c})\) and y is the distance between \(s^{\prime \prime }\in {\{LOS,NLOS\}}\) interferer MBS and the typical UE. We ignore possible overlaps between two holes and approximate \(\Omega\) as \(\Omega \approx \sum _{ s^{\prime \prime }\in {\{LOS,NLOS\}} } S(y,D,\theta _{c})\). Similar to Eq. (32), \(L_{I}(\mu _{k,n}^{s})\) is

$$\begin{aligned}&L_{I}(\mu _{k,n}^{s}|y) \nonumber \\&\quad = \prod _{j=1}^{2} \prod _{s'\in \{{LOS,NLOS}\}} exp\left( -\int _{R_{j}^{s'}(x)}^{\infty } ( 1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{j} |h_{j}|^{2} G_{j}r^{-\alpha ^{s'}})] ) \varLambda '^{s'}_{j}([0,r) dr\right) \nonumber \\&\qquad \prod _{s'\in \{{LOS,NLOS}\}} exp(\lambda _{2} \int _{\Omega }(1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s'}})]) P^{s'}(r) dS) \end{aligned}$$
(38)

Note that the exact region for the integral is \(\Omega \bigcap B^{c}(0,R_{2}^{s'}(x))\), but we approximate it by \(\Omega\). Similar to proof in Appendix 3, \(\int _{\Omega } (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s'}})]) P^{s'}(r) dS\) can be calculated as below

$$\begin{aligned}&\int _{\Omega } (1- \mathbb {E}[exp(-\mu _{1,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s'}})]) P^{s'}(r) dS\nonumber \\&\quad \approx \sum _{s^{\prime \prime }\in \{{LOS,NLOS}\}} \frac{\theta _{c}}{2\pi } \int _{0}^{2\pi } \int _{0}^{D} (1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}(u^{2}+y^{2}-2uycos(\phi ))^{-\alpha ^{s'}/2})])\nonumber \\&\qquad P^{s'}(\sqrt{u^{2}+y^{2}-2uycos(\phi )})udud\phi \end{aligned}$$
(39)

Now, to complete our derivation, we need to calculate PDF of y. Given that the typical UE is associated with a \(s\in \{LOS,NLOS\}\) BS in \(k{\mathrm{th}}\) tier at distance \(r_{k}=x\) and observe at least one \(s^{\prime \prime }\in \{LOS,NLOS\}\) MBS, CCDF of y is

$$\begin{aligned}&\bar{F}^{s{\prime \prime }}(y|T=k,S=s,r_{k}=x)= Pr(Y>y|T=k,S=s,r_{k}=x) \nonumber \\&\quad = Pr(\mathbb {N}(B(0,y) \backslash B(0,R_{1}^{s{\prime \prime }}(x)) =\varnothing )=\frac{ exp(-\varLambda _{1}^{s{\prime \prime }}([0,y)))exp(\varLambda _{1}^{s{\prime \prime }}([0,R_{1}^{s{\prime \prime }}(x))))}{1-exp(-\varLambda _{1}([R_{1}^{s{\prime \prime }}(x),\infty )))} \end{aligned}$$
(40)

where \(\mathbb {N}\) represents the number of points in \(\phi _{1}\) that are in the desired set. PDF of y now follows by differentiating the above expression

$$\begin{aligned}&f^{s{\prime \prime }}(y|T=k,S=s,r_{k}=x)= -\dfrac{d}{dy}\bar{F}^{s{\prime \prime }}(y|T=k,S=s,r_{k}=x)\nonumber \\&\quad =\frac{\varLambda ^{{\prime }s{\prime \prime }}_{1}([0,y)) exp(-\varLambda _{1}^{s{\prime \prime }}([0,y))+\varLambda _{1}^{s{\prime \prime }}([0,R_{1}^{s{\prime \prime }}(x))))}{1-exp(-\varLambda _{1}([R_{1}^{s{\prime \prime }}(x),\infty )))} \end{aligned}$$
(41)

Finally \(L_{I}(\mu _{k,n}^{s})\) can be expressed as

$$\begin{aligned}&L_{I}(\mu _{k,n}^{s}) \nonumber \\&\quad = \prod _{j=1}^{2} \prod _{s'\in \{{LOS,NLOS}\}} exp\left( -\int _{R_{j}^{s'}(x)}^{\infty }( 1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{j} |h_{j}|^{2} G_{j}r^{-\alpha ^{s'}})] ) \varLambda '^{s'}_{j}([0,r)) dr\right) \nonumber \\&\qquad \prod _{s'\in \{{LOS,NLOS}\}} \prod _{s^{\prime \prime }\in \{{LOS,NLOS}\}}\nonumber \\&\qquad \int _{R_{1}^{s{\prime \prime }}(x)}^{\infty }exp\left( \frac{\theta _{c}}{2\pi }\lambda _{2} \int _{0}^{2\pi } \int _{0}^{D}(1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}(u^{2}+y^{2}-2uycos(\phi ))^{-\alpha ^{s'}/2})]\right) \nonumber \\&\qquad P^{s'}(\sqrt{u^{2}+y^{2}-2uycos(\phi )})udud\phi )f^{s{\prime \prime }}(y|T=k,S=s,r_{k}=x)dy \end{aligned}$$
(42)

Similar to Eq. (30), \(\mathbb {E}[exp(-\mu _{k,n}^{s}P_{j} |h_{j}|^{2} G_{j}r^{-\alpha ^{s'}})]\) and \(\mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}(u^{2}+y^{2}-2uycos(\phi ))^{-\alpha ^{s'}/2})]\) can be calculated. Therefore, SINR coverage probability by incorporating the nearest non-sering LOS and NLOS can be obtained.

1.5 5. Proof of Theorem 4

The exact expression for the interference in our proposed two-tier HCN model is

$$\begin{aligned} I= \sum _{s'\in {\{LOS,NLOS\}}} \bigg \{\sum _{i\in {\{\phi _{1}^{s'}\} \backslash BS_{k,0}}} P_{1} |h_{1,i}|^{2} G_{1,i}r_{1,i}^{-\alpha ^{s'}} + \sum _{i\in {\{\phi _{2}^{s'} \cap \Gamma ^{c}\} \backslash BS_{k,0}}} P_{2} |h_{2,i}|^{2} G_{2,i}r_{2,i}^{-\alpha ^{s'}}\bigg \} \end{aligned}$$
(43)

where \(\Gamma = \bigcup _{y\in {\phi _{1}}} S(y,D,\theta _{c})\). However, due to the possible overlaps between the holes, the exact characterization of I is complex. Therefore, we approximate \(\Gamma\) to \(\Gamma \approx \sum _{s^{\prime \prime }\in {\{LOS,NLOS\}}} \sum _{y\in {\phi _{1}^{s{\prime \prime }}}} S(y,D,\theta _{c})\), which ignores possible overlaps between the holes. Using this assumption, \(L_{I}(\mu _{k,n}^{s})\) can be evaluated as

$$\begin{aligned}&L_{I}(\mu _{k,n}^{s}) \nonumber \\&\quad \approx \prod _{j=1}^{2} \prod _{s'\in {\{LOS,NLOS\}}} exp\left( -\int _{R_{j}^{s'}(x)}^{\infty }( 1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{j} |h_{j}|^{2} G_{j}r^{-\alpha ^{s'}})] ) \varLambda '^{s'}_{j}([0,r) dr\right) \nonumber \\&\qquad \prod _{s'\in \{{LOS,NLOS}\}} \mathbb {E}_{\phi _{1}} \left[ exp\left( \lambda _{2} \int _{\Gamma }(1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s'}})]) P^{s'}(r) dS\right) \right] \nonumber \\&\quad \approx exp \left( -\sum _{j=1}^{2} \sum _{s'\in \{LOS,NLOS\}} W_{j}^{s'}(x)\right) \prod _{s'\in \{{LOS,NLOS}\}}\nonumber \\&\qquad \mathbb {E}_{\phi _{1}^{s{\prime \prime }}} \left[ exp\left( \sum _{s^{\prime \prime }\in {\{LOS,NLOS\}}} \sum _{y\in {\phi _{1}^{s{\prime \prime }}}} \lambda _{2} \int _{S(y,D,\theta _{c})} (1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s'}})]) P^{s'}(r) dS\right) \right] \nonumber \\&\quad \approx exp \left( -\sum _{j=1}^{2} \sum _{s'\in \{LOS,NLOS\}} W_{j}^{s'}(x)\right) \prod _{s'\in \{{LOS,NLOS}\}} \prod _{s^{\prime \prime }\in \{{LOS,NLOS}\}}\nonumber \\&\qquad \mathbb {E}_{\phi _{1}^{s{\prime \prime }}} \left[ \prod _{y\in {\phi _{1}^{s{\prime \prime }}}} exp\left( \lambda _{2}\int _{S(y,D,\theta _{c})} (1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s'}})]) P^{s'}(r) dS\right) \right] \nonumber \\&\quad \approx exp \left( -\sum _{j=1}^{2} \sum _{s'\in \{LOS,NLOS\}} W_{j}^{s'}(x)\right) \prod _{s'\in \{{LOS,NLOS}\}} \prod _{s^{\prime \prime }\in \{{LOS,NLOS}\}}\nonumber \\&\qquad exp\left( -\int _{R_{1}^{s{\prime \prime }}(x)}^{\infty } (1- exp( \lambda _{2}\int _{S(y,D,\theta _{c})} (1- \mathbb {E}[exp(-\mu _{k,n}^{s}P_{2} |h_{2}|^{2} G_{2}r^{-\alpha ^{s'}})]) P^{s'}(r) dS)]))\varLambda _{1}^{s{\prime \prime }}([0,y)) dy \right) \nonumber \\&\quad \approx exp \left( -\sum _{j=1}^{2} \sum _{s'\in \{LOS,NLOS\}} W_{j}^{s'}(x)\right) \nonumber \\&\qquad exp\left( - \sum _{ s^{\prime \prime }\in {\{LOS,NLOS\}} } \int _{R_{1}^{s{\prime \prime }}(x)}^{\infty }\sum _{ s'\in {\{LOS,NLOS\}} } (1-exp(Q^{s'}(y)) ) \varLambda _{1}^{s{\prime \prime }}([0,y)) dy \right) \end{aligned}$$
(44)

Note that similar to prior proofs, the exact region for the integral is \(\Gamma \cap B^{c}(0,R_{2}^{s'}(x))\), but we approximate it by \(\Gamma\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattari, M., Abbasfar, A. Modeling and Analyzing of Millimeter Wave Heterogeneous Cellular Networks by Poisson Hole Process. Wireless Pers Commun 116, 2777–2804 (2021). https://doi.org/10.1007/s11277-020-07820-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07820-2

Keywords

Navigation