Skip to main content
Log in

Performance Analysis of MRC Receiver over Fisher Snedecor (F) Composite Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper considers the analysis of Fisher Snedecor (F) fading model with maximum ratio combining scheme. In this context, with the assumption of independent identically distributed (i.i.d.) branches, the channel capacity expressions for various power adaptive methods are derived. We further evaluate the expressions for nth moment, amount of fading (AF), and average bit error rate (ABER) for different modulation schemes. To go more insight, the asymptotic and approximate expressions of some performance metrics are derived. The numerical results demonstrate the derived expression and reduce to results of classical fading models such as Nakagami-m and Rayleigh. Moreover, numerical results show an excellent match to the Monte Carlo simulation results that verify the accuracy of derived expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simon, M. K., & Alouini, M. S. (2005). Digital Communication over Fading Channels (2nd ed.). New York: John Wiley & Sons.

    Google Scholar 

  2. Shankar, P. M. (2012). Fading and shadowing in wireless system. New York: Springer.

    Book  Google Scholar 

  3. Yoo, S. K., Cotton, S. L., Sofotasios, P. C., Matthaiou, M., Valkama, M., & Karagiannidis, G. K. (2017). The Fisher-Snedecor F distribution: a simple and accurate composite fading model. IEEE Communications Letters, 21(7), 1661–1664.

    Article  Google Scholar 

  4. Alouini, M. S., & Goldsmith, A. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  5. Kumar, S. (2015). Wireless communication: the fundamental and advanced concepts. Denmark: River Publishers.

    Google Scholar 

  6. Khan, I., Hall, P. S., Serra, A. A., Guraliuc, A. R., & Nepa, P. (2009). Diversity performance analysis for on-body communication channels at 2.45 GHz. IEEE Transactions on Antennas and Propagation, 57(4), 956–963.

    Article  Google Scholar 

  7. Michalopoulou, A., Alexandridis, A. A., Peppas, K., Zervos, T., Lazarakis, F., Dangakis, K., et al. (2012). Statistical analysis for on-body spatial diversity communications at 2.45 GHz. IEEE Transactions on Antennas and Propagation, 60(8), 4014–4019.

    Article  Google Scholar 

  8. Yoo, S. K., Cotton, S. L., & Scanlon, W. G. (2016). Switched diversity techniques for indoor off-body communication channels: an experimental analysis and modeling. IEEE Transactions on Antennas and Propagation, 64(7), 3202–3207.

    Article  Google Scholar 

  9. Shankar, P. M. (2006). Performance analysis of diversity combining algorithms in shadowed fading channels. Wireless Personal Communication, 37(1–2), 61–72.

    Article  Google Scholar 

  10. Bithas, P. S., Mathiopoulos, P. T., & Kotsopoulos, S. A. (2007). Diversity reception over Generalized-K fading channels. IEEE Transactions on Wireless Communication, 6(12), 4238–4243.

    Article  Google Scholar 

  11. Dwivedi, V. K., & Singh, G. (2014). Moment generating function based performance analysis of maximal ratio combining diversity receivers in the Generalized-K fading channels. Wireless Personal Communication, 77(3), 1959–1975.

    Article  Google Scholar 

  12. Aldalgamouni, T., Ilter, M.C., Badarneh, O.S., & Yanikomeroglu, H. (2018). Performance analysis of Fisher-Snedecor F composite fading channels. Paper presented at: IEEE middle-east and north Africa communications conference (MENACOMM), Jounieh, Lebanon.

  13. Gong, J., Lee, H., & Kang, J. (2018). Generalized moment generating function-based secrecy performance analysis over Fisher-Snedecor composite fading channels. Electronics Letters, 54(24), 1381–1383.

    Article  Google Scholar 

  14. Chen, S., Zhang, J., Karagiannidis, G. K., & Ai, B. (2018). Effective rate of MISO systems over Fisher-Snedecor F Fading Channels. IEEE Communications Letters, 22(12), 2619–2622.

    Article  Google Scholar 

  15. Kong, L., & Kaddoum, G. (2018). On physical layer security over the Fisher- Snedecor F wiretap Fading Channels. IEEE Access, 6, 39466–39472.

    Article  Google Scholar 

  16. Badarneh, O. S., Sofotasios, P.C., Muhaidat, S., Cotton, S. L., Rabie, K. & Al-Dhahir, N. (2018). On the secrecy capacity of Fisher-Snedecor F fading channels. In proceeding IEEE 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 102-107, Limassol, Cyprus

  17. Badarneh, O. S., Muhaidat, S., Sofotasios, P. C., Cotton, S. L. Rabie, K. & da Costa, D. B. (2018). The N* Fisher-Snedecor F cascaded fading model. In proceeding IEEE 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 1-7, Limassol, Cyprus

  18. Almehmadi, F. S., & Badarneh, O. S. (2018). On the effective capacity of Fisher-Snedecor F fading channels. Electonics Letters, 54(18), 1068–1070.

    Article  Google Scholar 

  19. Yoo, S. K., Cotton, S. L., Sofotasios, P. C., Muhaidat, S., Badarneh, O. S., & Karagiannidis, G. K. (2019). Entropy and energy detection-based spectrum sensing over F composite fading channels. IEEE Transactions on Communication, 67(7), 4641–4653.

    Article  Google Scholar 

  20. Al-Hmood, H. (2018). Performance of cognitive radio systems over κ-µ shadowed with integer μ and Fisher-Snedecor (F) fading channels. In proceeding IEEE International Conference on Engineering Technology and their Applications (IICETA), pp. 130-135, Al-Najaf, Iraq.

  21. Zhao, H., Yang, L., Salem, A. S., & Alouini, M. S. (2019). Ergodic capacity under power adaption over Fisher-Snedecor F fading channels. IEEE Communication Letters, 23(3), 546–549.

    Article  Google Scholar 

  22. Kapucu, N., & Bilim, M. (2019). Analysis of analytical capacity for Fisher-Snedecor F fading channels with different transmission schemes. Electronics Letters, 55(5), 283–285.

    Article  Google Scholar 

  23. Yoo, S. K., Sofotasios, P. C., Cotton, S. L., Muhaidat, S., Martinez, F. J. L., Jerez, J. M. R., et al. (2019). A comprehensive analysis of the achievable channel capacity in F composite fading channels. IEEE Access, 7, 34078–34094.

    Article  Google Scholar 

  24. Yoo, S. K., Cotton, S. L., Sofotasios, P. C., Muhaidat, S., & Karagiannidis, G. K. (2019). Level crossing rate and average fade duration in F composite fading channels. IEEE Wireless Communications Letters, 9(3), 281–284.

    Article  Google Scholar 

  25. Kapucu, N. (2019). Error performance of digital modulations over Fisher-Snedecor F fading channels. AEU-International Journal of Electronics and Communications, 108, 73–78.

    Article  Google Scholar 

  26. Du, H., Zhang, J., Peppas, K. P., Zhao, H., Ai, B., & Zhang, X. (2019). On the distribution of the ratio of products of Fisher-Snedecor F random variables and its applications. IEEE Transactions on Vehicular Technology, 69(2), 1855–1866.

    Article  Google Scholar 

  27. Cheng, W., & Wang, X. (2020). Bivariate Fisher Snedecor F distribution and its application to wireless communication systems. IEEE Access.

  28. Al-Hmood, H., & Al-Raweshidy, H. S. (2019). Selection combining scheme over non-identically distributed Fisher-Snedecor F fading channels. [Online]. Available: https://arxiv.org/pdf/1905.05595v1.

  29. Badarneh, O. S., da Costa, D. B., Sofotasios, P. C., Muhaidat, S., & Cotton, S. L. (2018). On the sum of Fisher-Snedecor F variates and its application to maximal-ratio combining. IEEE Wireless Communication Letters, 7(6), 966–969.

    Article  Google Scholar 

  30. Du, H., Zhang, J., Cheng, J., & Ai, B. (2020). Sum of Fisher-Snedecor F random variables and its applications. IEEE Open Journal of the Communications Society, 1, 342–356.

    Article  Google Scholar 

  31. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products (7th ed.). London: Academic Press.

    MATH  Google Scholar 

  32. Peppas, K.P., Nistazakis, H.E., & Tombras, G.S. (2011). An overview of the physical insight and the various performance metrics of fading channels in wireless communication systems. In: Advanced Trends in Wireless Communications. London, UK: Intech Open Limited, 1-22.

  33. Brychkov, Y. A., Marichev, O. I., & Prudnikov, A. P. (1986). Integrals and Series: More Special Functions (Vol. 3). Philadelphia: Gordon and Breach Science Publishers.

    MATH  Google Scholar 

  34. Renzo, M. D., Graziosi, F., & Santucci, F. (2010). Channel capacity over generalized fading channels: a novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Transactions on Vehicular Technology, 59(1), 127–149.

    Article  Google Scholar 

  35. Li, X., Chen, X., Zhang, J., Liang, Y., & Liu, Y. (2017). Capacity analysis of α-η-κ-μ fading channels. IEEE Communications Letters, 21(6), 1449–1452.

    Article  Google Scholar 

  36. Sun, J., & Reed, I. S. (1999). Performance of MDPSK, MPSK, and Noncoherent MFSK in wireless Rician fading channels. IEEE Transactions on Communications, 47(6), 813–816.

    Article  Google Scholar 

  37. Pawula, R. F. (1984). Asymptotic and error rate bounds for M-ary DPSK. IEEE Transactions on Communication, 32(1), 93–94.

    Article  MathSciNet  Google Scholar 

  38. Ferrari, G., & Corazza, G. E. (2004). Tight bounds and accurate approximations for DQPSK transmission bit error rate. Electronics Letters, 40(20), 1284–1285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Shankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, H., Kansal, A. Performance Analysis of MRC Receiver over Fisher Snedecor (F) Composite Fading Channels. Wireless Pers Commun 117, 1337–1359 (2021). https://doi.org/10.1007/s11277-020-07925-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07925-8

Keywords

Navigation