Skip to main content
Log in

Inherent Security-aware Resource Utilizing Methodology for Cloud Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cloud-based environments utilize a different kind of security services on the Internet in a cost effective manner. The cloud-based service providers may diminish the cost for the operational purpose by the methodology of automatic controlling of the resource utilization with the user’s demand. Moreover, the time and expenditure may expand and the amount of active utilization of computational resources is one of the high restrictions of the scalability measurement. The automatic controlling and utilization of resources are the biggest confront in a cloud computing environment. This paper proposed a solution for providing the automatic scalability of the limited resources for the multi-layered cloud applications. The Google penalty payment methodology was utilized to synchronize the expenditure for the penalty related issues and to correctly compute the actual profit. A hybrid resource utilization algorithm is used to find the valid resources in the cloud layer with a security-aware algorithm are utilized to distribute the resources to the active users based on their request. The experimental results are performed using CLOUDSIM that indicates the advancements of the proposed methodology in terms of resource utilization, providing security and profit identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhattacharjya, A., Zhong, X., & Li, X. (2019). A Lightweight and efficient secure hybrid RSA (SHRSA) messaging scheme with four-layered authentication stack. IEEE Access, 7, 30487–30506.

    Article  Google Scholar 

  2. Yu, R., Wang, J., Xu, T., Gao, J., An, Y., Zhang, G., & Yu, M. (2017). Authentication with block-chain algorithm and text encryption protocol in calculation of social network. IEEE Access, 5, 24944–24951.

    Article  Google Scholar 

  3. Wong, C. K., Gouda, M., & Lam, S. S. (2000). Secure group communications using key graphs. IEEE/ACM Transactions on Networking, 8, 16–30.

    Article  Google Scholar 

  4. Cao, N., Wang, C., Li, M., Ren, K., & Lou, W. (2014). Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, 25, 222–233.

    Article  Google Scholar 

  5. Kamil, I.A., Ogundoyin, S.O. (2018) EPDAS: Efficient privacy-preserving data analysis scheme for smart grid network. Journal of King Saud University-Computer and Information Sciences.

  6. Feng, B., Ma, X., Guo, C., Shi, H., Fu, Z., & Qiu, T. (2016). An efficient protocol with bidirectional verification for storage security in cloud computing. IEEE Access, 4, 7899–7911.

    Article  Google Scholar 

  7. Liang, K., & Susilo, W. (2015). Searchable attribute-based mechanism with efficient data sharing for secure cloud storage. IEEE Transactions on Information Forensics and Security, 10, 1981–1992.

    Article  Google Scholar 

  8. Li, M., Yu, S., Zheng, Y., Ren, K., & Lou, W. (2013). Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Transactions on Parallel and Distributed Systems, 24, 131–143.

    Article  Google Scholar 

  9. Li, J., Yu, Q., & Zhang, Y. (2019). Hierarchical attribute based encryption with continuous leakage-resilience. Information Sciences, 484, 113–134.

    Article  Google Scholar 

  10. Xu, S., Yang, G., Mu, Y., & Liu, X. (2019). A secure IoT cloud storage system with fine-grained access control and decryption key exposure resistance. Future Generation Computer Systems, 97, 284–294.

    Article  Google Scholar 

  11. Lang, B., Wang, J., & Liu, Y. (2017). Achieving flexible and self-contained data protection in cloud computing. IEEE Access, 5, 1510–1523.

    Article  Google Scholar 

  12. Hong, J., Wen, T., Guo, Q., Ye, Z., Yin, Y. (2017) Privacy protection and integrity verification of aggregate queries in cloud computing. Cluster Computing 1–11

  13. Ali, M., Malik, S. U., & Khan, S. U. (2017). DaSCE: Data security for cloud environment with semi-trusted third party. IEEE Transactions on Cloud Computing, 5, 642–655.

    Article  Google Scholar 

  14. Jia, X., He, D., Zeadally, S., & Li, L. (2017). Efficient revocable ID-based signature with cloud revocation server. IEEE Access, 5, 2945–2954.

    Article  Google Scholar 

  15. Wang, S., Zhang, D., Zhang, Y., & Liu, L. (2018). Efficiently revocable and searchable attribute-based encryption scheme for mobile cloud storage. IEEE Access, 6, 30444–30457.

    Article  Google Scholar 

  16. Sun, Y., Susilo, W., Zhang, F., & Fu, A. (2018). CCA-secure revocable identity-based encryption with ciphertext evolution in the cloud. IEEE Access, 6, 56977–56983.

    Article  Google Scholar 

  17. Ali, S., Rauf, A., Islam, N., Farman, H., Jan, B., Khan, M., et al. (2018). SGKMP: A scalable group key management protocol. Sustainable Cities and Society, 39, 37–42.

    Article  Google Scholar 

  18. Gonzales, D., Kaplan, J. M., Saltzman, E., Winkelman, Z., & Woods, D. (2017). Cloud-trust—A security assessment model for infrastructure as a service (IaaS) clouds. IEEE Transactions on Cloud Computing, 5, 523–536.

    Article  Google Scholar 

  19. Shen, W., Qin, J., Yu, J., Hao, R., & Hu, J. (2019). Enabling identity-based integrity auditing and data sharing with sensitive information hiding for secure cloud storage. IEEE Transactions on Information Forensics and Security, 14, 331–346.

    Article  Google Scholar 

  20. Shao, B., Bian, G., Wang, Y., Su, S., & Guo, C. (2018). Dynamic data integrity auditing method supporting privacy protection in vehicular cloud environment. IEEE Access, 6, 43785–43797.

    Article  Google Scholar 

  21. He, J., Zhang, Z., Li, M., Zhu, L., & Hu, J. (2019). Provable data integrity of cloud storage service with enhanced security in the internet of things. IEEE Access, 7, 6226–6239.

    Article  Google Scholar 

  22. Wu, X., Jiang, R., & Bhargava, B. (2017). On the security of data access control for multiauthority cloud storage systems. IEEE Transactions on Services Computing, 10, 258–272.

    Article  Google Scholar 

  23. Wang, S., Zhou, J., Liu, J. K., Yu, J., Chen, J., & Xie, W. (2016). An efficient file hierarchy attribute-based encryption scheme in cloud computing. IEEE Transactions on Information Forensics and Security, 11(6), 1265–1277.

    Article  Google Scholar 

  24. Ateniese, G., Hohenberger S. (2005) Proxy re-signatures: New definitions, algorithms and applications. Proceedings of the 12th Computer and Communications Security (pp. 310–319), 7–11 Nov, USA.

  25. Wang, X., He, J., Cheng, P., & Chen, J. (2019). Privacy preserving collaborative computing: heterogeneous privacy guarantee and efficient incentive mechanism. IEEE Transactions on Signal Processing, 67(1), 221–233.

    Article  MathSciNet  Google Scholar 

  26. Ganeshkumar, K., & Arivazhagan, D. (2014). Generating a digital signature based on new cryptographic scheme for user authentication and security. Indian Journal of Science and Technology, 7, 1–5.

    Article  Google Scholar 

  27. Institute, P. (2016) Sixth annual benchmark study on privacy and security of healthcare data. Technical report. Ponemon Institute LLC.

  28. Li, P., Li, J., Huang, Z., Gao, C.-Z., Chen, W.-B., & Chen, K. (2017). Privacy preserving outsourced classification in cloud computing. Cluster Computing. https://doi.org/10.1007/s10586-017-0849-9.

    Article  Google Scholar 

  29. Al-Ayyoub, M., Jararweh, Y., Daraghmeh, M., & Althebyan, Q. (2015). Multi-agent based dynamic resource provisioning and monitoring for cloud computing systems infrastructure. Cluster Computing, 18, 919.

    Article  Google Scholar 

  30. Li, J., Zhang, Y., Chen, X., & Xiang, Y. (2018). Secure attribute-based data sharing for resource-limited users in cloud computing. Computers & Security, 72, 1–12. https://doi.org/10.1016/j.cose.2017.08.007.

    Article  Google Scholar 

  31. Yu, J., Ren, K., Wang, C., & Varadharajan, V. (2015). Enabling cloud storage auditing with key-exposure resistance. IEEE Transactions on Information forensics and security, 10(6), 1167–1179.

    Article  Google Scholar 

  32. Chen, X., Li, J., Huang, X., Ma, J., & Lou, W. (2015). New publicly verifiable databases with efficient updates. IEEE Transactions on Dependable and Secure Computing, 12(5), 546–556.

    Article  Google Scholar 

  33. Libert, B., Vergmud D. (2008) Unidirectional chosen-ciphertext secure proxy re-encryption. Proceedings of the PKC 2008, 9–12 March 2008 (pp. 360–379). Springer: Berlin/Heidelberg.

  34. Jia, G., Han, G., Xie, H., & Du, J. (2019). Hybrid-LRU caching for optimizing data storage and retrieval in edge computing-based wearable sensors. IEEE Internet of Things Journal, 6(2), 1342–1351.

    Article  Google Scholar 

  35. Vijayakumar, P., Pandiaraja, P., Karuppiah, M., & Deborah, L. J. (2017). An efficient secure communication for healthcare system using wearable devices. Computers & Electrical Engineering, 63, 232–245.

    Article  Google Scholar 

  36. Vijayakumar, P., Pandiaraja, P., Balamurugan, B., & Karuppiah, M. (2019). A novel performance enhancing task scheduling algorithm for cloud based E-health environment. International Journal of E-Health and Medical Communications (IJEHMC), 10(2), 102–117 IGI-Global.

    Article  Google Scholar 

  37. Mazini, M., Shirazi, B., Mahdavi, I. (2018) Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms. Journal of King Saud University-Computer and Information Sciences.

  38. Kirubakaramoorthi, R., Arivazhagan, D., & Helen, D. (2015). Survey on encryption techniques used to secure cloud storage system. Indian Journal of Science and Technology. https://doi.org/10.17485/ijst/2015/v8i36/87861.

    Article  Google Scholar 

  39. Muthu, A. B. A., & Enoch, S. (2017). Optimized scheduling and resource allocation using evolutionary algorithms in cloud environment. International Journal of Intelligent Engineering and Systems, 10(5), 125–133.

    Article  Google Scholar 

  40. Wang, X. A., Xhafa, F., Ma, J., & Zheng, Z. (2019). Controlled secure social cloud data sharing based on a novel identity based proxy re-encryption plus scheme. Journal of Parallel and Distributed Computing, 130, 153–165.

    Article  Google Scholar 

  41. Tian, H., Nan, F., Jiang, H., Chang, C.-C., Ning, J., & Huang, Y. (2019). Public auditing for shared cloud data with efficient and secure group management. Information Sciences, 472, 107–125.

    Article  Google Scholar 

  42. Pitchai, R., Babu, S., Supraja, P., & Anjanayya, S. (2019). Prediction of availability and integrity of cloud data using soft computing technique. Soft Computing. https://doi.org/10.1007/s00500-019-04008-0.

    Article  Google Scholar 

  43. Grossman, R. L. (2019). Data lakes, clouds, and commons: A review of platforms for analyzing and sharing genomic data. Trends in Genetics, 35(3), 223–234.

    Article  Google Scholar 

  44. Wang, H., Zhang, Y., Chen, K., Sui, G., Zhao, Y., & Huang, X. (2019). Functional broadcast encryption with applications to data sharing for cloud storage. Information Sciences, 502, 109–124.

    Article  MathSciNet  Google Scholar 

  45. Zhang, Y., Xu, C., Lin, X., & Shen, X. (2019). Blockchain-based public integrity verification for cloud storage against procrastinating auditors. IEEE Transactions on Cloud Computing. https://doi.org/10.1109/TCC.2019.2908400.

    Article  Google Scholar 

  46. Liu, Z.L., Li, B., Huang, Y.Y., Li, J., Xiang, Y., Pedrycz, W. (2019). Newmcos: Towards a practical multi-cloud oblivious storage scheme. IEEE Transactions on Knowledge and Data Engineering 99.

  47. Li, J., Huang, Y.Y., Wei, Y., Lv, S.Y., Liu, Z.L., Dong, C.Y., Lou W.J. (2019) Searchable symmetric encryption with forward search privacy. IEEE Transactions on Dependable and Secure Computing 99

  48. Liu, H., Yao, X., Yang, T., & Ning, H. (2019). Cooperative privacy preservation for wearable devices in hybrid computing-based smart health. IEEE Internet of Things Journal, 6(2), 1352–1362.

    Article  Google Scholar 

  49. Chadwick, D. W., Fan, W., Constantino, G., de Lemos, R., Di Cerbo, F., Herwono, I., Manea, M., Mori, P., Sajjad, A., & Wang, X.-S. (2020). A cloud-edge based data security architecture for sharing and analysing cyber threat information. Future Generation Computer Systems, 102, 710–722.

    Article  Google Scholar 

  50. Harold Robinson, Y., Jeena Jacob, I., Golden Julie, E., Ebby Darney, P. (2019). Hadoop mapreduce and dynamic intelligent splitter for efficient and speed transmission of cloud-based video transforming. IEEE - 3rd International Conference on Computing Methodologies and Communication (ICCMC), (pp. 400–404). IEEE.

Download references

Funding

This work has not supported by any funding agency/institution.

Author information

Authors and Affiliations

Authors

Contributions

CGK Writing—original draft, Writing—review & editing, Conceptualization, Data curation, Validation. EGJ Writing—Data curation, Validation. YHR Conceptualization, Formal analysis, review & editing, Conceptualization.

Corresponding author

Correspondence to Y. Harold Robinson.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest. This research does not involve any human or animal participation. All authors have checked and agreed the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopala Krishnan, C., Golden Julie, E. & Harold Robinson, Y. Inherent Security-aware Resource Utilizing Methodology for Cloud Environments. Wireless Pers Commun 120, 9–26 (2021). https://doi.org/10.1007/s11277-021-08431-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08431-1

Keywords

Navigation