Skip to main content

Advertisement

Log in

Large Antenna Array with Hybrid Beamforming System for 5G Outdoor Mobile Broadband Communication Deployments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Millimeter wave (mmWave) communication requires large antenna arrays to increase the capability of cellular networks of the fifth generation with good beam-forming gains and a substantial reduction in path losses for both transmitting and receiving terminals. As large antenna arrays require one radio frequency chain per antenna element, the fully digital beamforming technique results in high cost and high-power consumption, and it is therefore not feasible. However, in analog solutions, adaptive gain control cannot be used as it reduces the likelihood of advanced processing and contributes to poor efficiency. Hybrid schemes are possible exciting solutions that overcome the deficiencies of pure digital or analog beam forming. The following are the three key contributions of the proposed work: a typical link budget specification for target data rate 3.10 Gbps in downlink and 0.6 Gbps in uplink is provided, micro strip patch antenna with a single element is designed to operate at 28 GHz and then converted into a standard linear array and a Kalman-based hybrid analog/digital precoding is used with a downlink rate of 4.64 Gbps/cell and an uplink rate of 1.84 Gbps/cell in multi-user environments. And the influence of both base station (BS) and 5G User equipment (UEs) beam steering capability is also explored. From the simulation result, it is evident that the proposed work offers a substantial increase in spectral efficiency approximately 9.28 bps/Hz at 20 dB with 10 channel paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. 5G: A technology vision (2013).

  2. Lopez-Perez, D., Guvenc, I., Roche, G. D. L., Kountouris, M., Quek, T. Q. S., & Zhang, J. (2011). ENHANCED intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.

    Article  Google Scholar 

  3. Feng, D., Jiang, C., Lim, G., Cimini, L. J., Feng, G., & Li, G. Y. (2013). A survey of energy-effcient wireless communications. IEEE Communications Surveys and Tutorials, 15, 167–178.

    Article  Google Scholar 

  4. Bogale, T. E., & Le, L. B. (2015). Massive MIMO and millimeter wave for 5G wireless HetNet: Potentials and challenges. arXiv preprint https://arxiv.org/abs/1510.06359.

  5. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  6. Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52, 56–62.

    Article  Google Scholar 

  7. Rajagopal, S., Abu-Surra, S., Pi, Z., & Khan, F. (2011). Antenna array design for multi-Gbps mmWave mobile broadband communication. In 2011 IEEE global telecommunications conference-GLOBECOM (pp. 1–6). IEEE.

  8. Huo, Y., Dong, X., & Xu, W. (2017). 5G cellular user equipment: From theory to practical hardware design. IEEE Access, 5, 13992–14010.

    Article  Google Scholar 

  9. El-Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W., Jr. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  10. Alkhateeb, A., El-Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.

    Article  Google Scholar 

  11. Yu, X., Shen, J. C., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 485–500.

    Article  Google Scholar 

  12. Sohrabi, F., & Yu, W. (2016). Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE Journal of Selected Topics in Signal Processing, 10(3), 501–513.

    Article  Google Scholar 

  13. Lin, T., Cong, J., Zhu, Y., Zhang, J., & Letaief, K. B. (2019). Hybrid beamforming for millimeter wave systems using the MMSE criterion. IEEE Transactions on Communications, 67(5), 3693–3708.

    Article  Google Scholar 

  14. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.

    Article  Google Scholar 

  15. ETSI EN 302 217-4-V2.1 (2017-05)-Fixed radio systems; Characteristics and requirements for point-to-point equipment and antennas; Part 4: Antennas, 2017.

  16. Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2017). Millimeter-wavecommunications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Communications Surveys Tutorials, 20(2), 870–913.

    Article  Google Scholar 

  17. Rabinovich, V., & Alexandrov, N. (2013). Antenna arrays and automotive applications. (pp. 24–52). Berlin: Springer.

    Book  Google Scholar 

  18. Das, K. S., & Das, A. (2013). Antenna and wave propagation. (pp. 153–163). New York: Tata McGraw Hill Education Private Limited.

    Google Scholar 

  19. Ni, W., & Dong, X. (2016). Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Transactions on Communications, 64(1), 201–211.

    Article  MathSciNet  Google Scholar 

  20. Abdulhameed, M. K., Isa, M. M., Ibrahim, I. M., Mohsin, M. K., Hashim, S. R., & Attiah, M. L. (2018). Improvement of microstrip antenna performance on thick and high permittivity substrate with electromagnetic band gap. Journal of Advanced Research in Dynamical and Control Systems, 10(4), 661–669.

    Google Scholar 

  21. Rappaport, T. S., Heath, R. W., Jr., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. . Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  22. https://blogs.3ds.com/simulia/5g-antenna-design mobile-phones.

  23. Abou Yassin, M. R., & Abdallah, H. (2020). Hybrid beamforming in multiple user massive multiple input multiple output 5G communications system. In 2020 7th international conference on electrical and electronics engineering (ICEEE) (pp. 215–220). IEEE.

  24. Dai, L., Wang, B., Peng, M., & Chen, S. (2018). Hybrid precoding-based millimeter-wavemassive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 37(1), 131–141.

    Article  Google Scholar 

  25. Alkhateeb, A., Leus, G., & Heath, R. W. (2015). Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications, 14(11), 6481–6494.

    Article  Google Scholar 

  26. Vizziello, A., Savazzi, P., & Chowdhury, K. R. (2018). A Kalman based hybrid precoding for multi-user millimeter wave MIMO systems. IEEE Access, 6, 55712–55722.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeyakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyakumar, P., Malar, E., Idnani, N. et al. Large Antenna Array with Hybrid Beamforming System for 5G Outdoor Mobile Broadband Communication Deployments. Wireless Pers Commun 120, 2001–2027 (2021). https://doi.org/10.1007/s11277-021-08457-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08457-5

Keywords

Navigation