Skip to main content

Advertisement

Log in

Secrecy Analysis of Overlay Mechanism in Radio Frequency Energy Harvesting Networks with Jamming under Nakagami-m fading

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Overlay mechanism offers secondary users (SUs) chances to access licensed spectrum of primary users (PUs) to improve spectrum utilization efficiency. However, these chances impose serious security challenges when wire-tappers emulate legal users (SUs/PUs) to eavesdrop secret information. Moreover, energy sources available for SUs to transmit its private information as well as assist PUs in the overlay mechanism are problematic in green communication age. This paper proposes SUs who are able to scavenge radio frequency energy in signals of PUs to meet green communication requirement and jam wire-tappers to secure both secondary and primary information. Important secrecy performance indicators of overlay mechanism in radio frequency energy harvesting networks with jamming under Nakagami-m fading are evaluated by proposed precise expressions. Various results validate these expressions and show that secrecy performances of SUs and PUs are flexibly controlled, compromised and optimized with proper selections of system parameters as well as are dramatically affected by fading severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The idea of this paper was conceived in our conference papers where we briefly presented a part of this paper for Rayleigh fading in [29] and Nakagami-m fading in [30]. However, we did not provide the detailed derivations of the performance expressions, various results, and thorough discussions on the results in both these conference papers. This paper presents the complete idea and derives elaborately the performance expressions as well as provides various results and discussions to obtain insights into the secrecy capability.

  2. Energy which information decoder consumes is assumed to be negligible. This assumption is widely acknowledged in the literature (e.g., [1, 10, 13, 16,17,18,19,20]).

  3. For example, [16,17,18,19] and [32] proposed a collaborative hand-shaking merely among \(\texttt {C}\), \(\texttt {B}\) and \(\texttt {D}\) for \(\texttt {C}\) to securely share the seed of its jamming signal generator with \(\texttt {B}\) and \(\texttt {D}\).

References

  1. Ho, C. D., et al. (2021). Short-packet communications in wireless-powered cognitive IoT networks: Performance analysis and deep learning evaluation. IEEE Transactions on Vehicular Technology, 70(3), 2894–2899.

    Article  Google Scholar 

  2. Askar, R., et al. (2021). Interference handling challenges toward full duplex evolution in 5G and beyond cellular networks. IEEE Wireless Communications, 28(1), 51–59.

    Article  Google Scholar 

  3. Akhmetkaziyev, Y., et al. (2021). Performance of NOMA-enabled cognitive satellite-terrestrial networks with non-ideal system limitations. IEEE Access, 9, 35932–35946.

    Article  Google Scholar 

  4. Tayel, A. F., et al. (2021). Throughput maximization of hybrid access in multi-class cognitive radio networks with energy harvesting. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2021.3059862.

    Article  Google Scholar 

  5. Duy, T. T. et al. (2021). Outage Probability of Interference Cancellation Based Two-Way Relaying Cognitive Radio Protocol with Primary MIMO Communication, In Proc. IEEE ICCE, Phu Quoc Island, Vietnam, 13-15, pp. 481-486.

  6. Albreem, M. A., et al. (2021). Green Internet of Things (GIoT): Applications, practices, awareness, and challenges. IEEE Access, 9, 38833–38858.

    Article  Google Scholar 

  7. Shaikh, F. K., et al. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.

    Article  Google Scholar 

  8. Zeadally, S., et al. (2020). Design architectures for energy harvesting in the Internet of Things. Renewable and Sustainable Energy Reviews, 128, 1–22.

    Article  Google Scholar 

  9. Wang, M., et al. (2021). Performance analysis of millimeter wave wireless power transfer with imperfect beam alignment. IEEE Transactions on Vehicular Technology, 70(3), 2605–2618.

    Article  Google Scholar 

  10. Al-Obiedollah, H., et al. (2021). A joint beamforming and power-splitter optimization technique for SWIPT in MISO-NOMA system. IEEE Access, 9, 33018–33029.

    Article  Google Scholar 

  11. Li, B., et al. (2021). Energy-efficient resources allocation with millimeter-wave massive MIMO in ultra dense HetNets by SWIPT and CoMP. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2021.3058776.

    Article  Google Scholar 

  12. Song, K., et al. (2021). On the secrecy for relay-aided SWIPT internet of things system with cooperative eavesdroppers. IEEE Access, 9, 28204–28212.

    Article  Google Scholar 

  13. Ho-Van, K., et al. (2020). Security enhancement for energy harvesting cognitive networks with relay selection. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2020/8867148.

    Article  Google Scholar 

  14. Ho-Van, K., et al. (2020). Security performance of underlay cognitive relaying networks with energy harvesting. Wireless Personal Communications, 110(2), 829–846.

    Article  Google Scholar 

  15. Ho-Van, K., et al. (2020). Security analysis for underlay cognitive network with energy scavenging capable relay over Nakagami-m fading channels. Wireless Personal Communications, 110(2), 829–846.

    Article  Google Scholar 

  16. Su, R. et al. (2019). Secure Cooperative Transmission in Cognitive AF Relay Systems with Destination-Aided Jamming and Energy Harvesting, In Proc. IEEE PIMRC, Istanbul, Turkey, 8-11 Sept. 2019, pp. 1-5

  17. Su, R. et al. (2018). Destination-Assisted Jamming for Physical-Layer Security in SWIPT Cognitive Radio Systems, In Proc. IEEE WCNC, Barcelona, Spain, 15-18 April 2018, pp. 1-6.

  18. Wang, D., et al. (2019). Primary privacy preserving with joint wireless power and information transfer for cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 6(2), 683–693.

    Article  Google Scholar 

  19. Xu, M. et al. (2018). Secure Transmission Solutions in Energy Harvesting Enabled Cooperative Cognitive Radio Networks, in Proc. IEEE WCNC, Barcelona, Spain, 15-18 April 2018, pp. 1-6.

  20. Li, M., et al. (2018). Physical layer security in overlay cognitive radio networks with energy harvesting. IEEE Transactions on Vehicular Technology, 67(11), 11274–11279.

    Article  Google Scholar 

  21. Khan, R., et al. (2020). A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions. IEEE Communications Surveys and Tutorials, 22, 196–248.

    Article  Google Scholar 

  22. Ebrahimi, N., et al. (2021). Physical layer secret key generation using joint interference and phase shift keying modulation. IEEE Transactions on Microwave Theory and Techniques. https://doi.org/10.1109/TMTT.2021.3058183.

    Article  Google Scholar 

  23. Li, B., et al. (2021). Security enhancement with a hybrid cooperative NOMA scheme for MEC system’’. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2021.3061718.

    Article  Google Scholar 

  24. Alnagar, S. I., et al. (2021). Q-learning-based power allocation for secure wireless communication in UAV-aided relay network. IEEE Access, 9, 33169–33180.

    Article  Google Scholar 

  25. Huang, K. W., et al. (2021). Jamming aided covert communication with multiple receivers. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2021.3059306.

    Article  Google Scholar 

  26. Abughalwa, M., et al. (2021). A secrecy study of UAV based networks with fountain codes and FD jamming’’. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2021.3056389.

    Article  Google Scholar 

  27. Sun, L., et al. (2020). Alternate-jamming-aided wireless physical-layer surveillance: Protocol design and performance analysis. IEEE Transactions on Information Forensics and Security, 16, 1989–2003.

    Article  Google Scholar 

  28. Islam, S. H., et al. (2021). Impact of correlation and pointing error on secure outage performance over arbitrary correlated Nakagami-m and M-turbulent fading mixed RF-FSO channel. IEEE Photonics Journal, 13(2), 1–17.

    Article  Google Scholar 

  29. Dang-Ngoc, H. et al. (2020). Key secrecy performance metrics of overlay networks with energy scavenging and artificial noise,” In Proc. IEEE SigTelCom, Ha Noi, Vietnam, 28-29 Aug. 2020, pp. 77-81.

  30. Pham-Thi-Dan, N. et al. (2020) Secrecy throughput analysis of energy scavenging overlay networks with artificial noise,” In Proc. IEEE ATC, Khanh Hoa, Vietnam, 08-10 Oct. 2020, pp. 90-94.

  31. Gradshteyn, I. S., et al. (2000). Table of integrals, series and products (6th ed.). San Diego, CA: Academic.

    MATH  Google Scholar 

  32. Wang, F., et al. (2020). Secure resource allocation for polarization-based non-linear energy harvesting over 5G cooperative CRNs’’. IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2020.3028585.

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2020-20-27.

We would like to thank Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for the support of time and facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiem Do-Dac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Special Pdfs

Let

$$\begin{aligned} {Z_{cb}} = 1 + \frac{{U{g_{cb}}}}{{{J_{cb}}{g_{cb}} + {\epsilon _b}}}, \end{aligned}$$
(74)

and

$$\begin{aligned} {Z_{cw}} = 1 + \frac{{U{g_{cw}}}}{{{J_{cw}}{g_{cw}} + {\epsilon _w}}}, \end{aligned}$$
(75)

where U, \(J_{cw}\), and \(J_{cb}\) are defined in (29), (30), and (33), respectively.

This appendix derives the pdfs of \({Z_{cb}}\) and \({Z_{cw}}\).

From (74), one obtains

$$\begin{aligned} {g_{cb}} = \frac{{\left( {{Z_{cb}} - 1} \right) {\epsilon _b}}}{{U + {J_{cb}} - {J_{cb}}{Z_{cb}}}}. \end{aligned}$$
(76)

Because \(g_{cb} \ge 0\), \({Z_{cb}}\) is constrained in \(\left[ {\left. {1,\frac{U}{{{J_{cb}}}} + 1} \right) } \right. \).

The Jacobian coefficient is computed as

$$\begin{aligned} \frac{{d{g_{cb}}}}{{d{Z_{cb}}}} = \frac{{U{\epsilon _b}}}{{{{\left( {U + {J_{cb}} - {J_{cb}}{Z_{cb}}} \right) }^2}}}. \end{aligned}$$
(77)

Given the variable transform in (74), the pdf of \(Z_{cb}\) can be obtained from the pdf of \(g_{cb}\) and the Jacobian coefficient as

$$\begin{aligned} {f_{{Z_{cb}}}}\left( z \right) = {f_{{g_{cb}}}}\left( {\frac{{\left( {z - 1} \right) U}}{{U + {J_{cb}} - {J_{cb}}z}}} \right) {\left| {\frac{{d{g_{cb}}}}{{d{Z_{cb}}}}} \right| _{{Z_{cb}} = z}}. \end{aligned}$$
(78)

Substituting \({f_{{g_{cb}}}}\left( z \right) = \frac{{\xi _{cb}^{{\alpha _{cb}}}}}{{\Gamma \left( {{\alpha _{cb}}} \right) }}{z^{{\alpha _{cb}} - 1}}{e^{ - {\xi _{cb}}z}}\) and the Jacobian coefficient into (78), the pdf of \(Z_{cb}\) is obtained as

$$\begin{aligned} {f_{{Z_{cb}}}}\left( z \right) = \frac{{Q_{cb}^{{\alpha _{cb}}}{e^{{Q_{cb}}}}U}}{{{J_{cb}}\Gamma \left( {{\alpha _{cb}}} \right) }}{e^{\frac{{{W_{cb}}}}{{z - {L_{cb}}}}}}\frac{{{{\left( {z - 1} \right) }^{{\alpha _{cb}} - 1}}}}{{{{\left( {{L_{cb}} - z} \right) }^{{\alpha _{cb}} + 1}}}}, \ \ \ 1 \le z < {L_{cb}}, \end{aligned}$$
(79)

where \(L_{cb}\), \(Q_{cb}\), and \(W_{cb}\) in (34), (36), and (39), respectively.

Similarly, the pdf of \(Z_{cw}\) is represented as

$$\begin{aligned} {f_{{Z_{cw}}}}\left( t \right) = \frac{{Q_{cw}^{{\alpha _{cw}}}{e^{{Q_{cw}}}}U}}{{{J_{cw}}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{\frac{{{W_{cw}}}}{{t - {L_{cw}}}}}}\frac{{{{\left( {t - 1} \right) }^{{\alpha _{cw}} - 1}}}}{{{{\left( {{L_{cw}} - t} \right) }^{{\alpha _{cw}} + 1}}}}, \ \ \ 1 \le t < {L_{cw}}, \end{aligned}$$
(80)

where \(L_{cw}\), \(Q_{cw}\), and \(W_{cw}\) in (31), (41), and (42), respectively.

Appendix B: Special Integral

This appendix solves the following integral

$$\begin{aligned} \mathcal{M}\left( {m,n,{S_{cb}}} \right) = \int \limits _m^n {{f_{{Z_{cb}}}}\left( z \right) dz}, \end{aligned}$$
(81)

where \({S_{cb}} = \left\{ {U,J_{cb},{\xi _{cb}},{\alpha _{cb}},{\epsilon _b}} \right\} \) denotes the set of parameters related to the \(\texttt {C}\rightarrow \texttt {B}\) transmission and \(1 \le m < n \le L_{cb}\).

Inserting \({{f_{Z_{cb}}}\left( z \right) }\) in (79) into (81) and after changing the variable, (81) is rewritten as

$$\begin{aligned} \mathcal{M}\left( {m,n,{S_{cb}}} \right)&= \int \limits _m^n {\frac{{Q_{cb}^{{\alpha _{cb}}}{e^{{Q_{cb}}}}U}}{{{J_{cb}}\Gamma \left( {{\alpha _{cb}}} \right) }}{e^{\frac{{{W_{cb}}}}{{z - {L_{cb}}}}}}\frac{{{{\left( {z - 1} \right) }^{{\alpha _{cb}} - 1}}}}{{{{\left( {{L_{cb}} - z} \right) }^{{\alpha _{cb}} + 1}}}}dz} \nonumber \\&= ^{t = \frac{1}{{z - {L_{cb}}}}} \frac{{Q_{cb}^{{\alpha _{cb}}}{e^{{Q_{cb}}}}U}}{{{J_{cb}}\Gamma \left( {{\alpha _{cb}}} \right) }}{\left( { - \frac{U}{{{J_{cb}}}}} \right) ^{{\alpha _{cb}} - 1}}\int \limits _{\frac{1}{{n - {L_{cb}}}}}^{\frac{1}{{m - {L_{cb}}}}} {{e^{{W_{cb}}t}}{{\left( {t + \frac{{{J_{cb}}}}{U}} \right) }^{{\alpha _{cb}} - 1}}dt}. \end{aligned}$$
(82)

Executing the binomial expansion to \({{{\left( {t + \frac{{{J_{cb}}}}{U}} \right) }^{{\alpha _{cb}} - 1}}}\) and after some simplifications, (82) is reduced to

$$\begin{aligned} \mathcal{M}\left( {m,n,{S_{cb}}} \right)&= {\left( { - 1} \right) ^{{\alpha _{cb}} + 1}}\frac{{W_{cb}^{{\alpha _{cb}}}{e^{{Q_{cb}}}}}}{{\Gamma \left( {{\alpha _{cb}}} \right) }}\int \limits _{\frac{1}{{n - {L_{cb}}}}}^{\frac{1}{{m - {L_{cb}}}}} {{e^{{W_{cb}}t}}\left\{ {\sum \limits _{l = 0}^{{\alpha _{cb}} - 1} {\left( {\begin{array}{*{20}{c}} {{\alpha _{cb}} - 1}\\ l \end{array}} \right) } {t^l}{{\left( {\frac{{{J_{cb}}}}{U}} \right) }^{{\alpha _{cb}} - 1 - l}}} \right\} dt} \nonumber \\&= {\left( { - 1} \right) ^{{\alpha _{cb}} + 1}}\frac{{Q_{cb}^{{\alpha _{cb}}}{e^{{Q_{cb}}}}U}}{{{J_{cb}}\Gamma \left( {{\alpha _{cb}}} \right) }}\sum \limits _{l = 0}^{{\alpha _{cb}} - 1} {\left( {\begin{array}{*{20}{c}} {{\alpha _{cb}} - 1}\\ l \end{array}} \right) } {\left( {\frac{U}{{{J_{cb}}}}} \right) ^l}\int \limits _{\frac{1}{{n - {L_{cb}}}}}^{\frac{1}{{m - {L_{cb}}}}} {{t^l}{e^{{W_{cb}}t}}dt}. \end{aligned}$$
(83)

By invoking [31, eq. (2.321.2)], the last integral in (83) is computed in closed-form, reducing (83) to

$$\begin{aligned} \mathcal{M}\left( {m,n,{S_{cb}}} \right)&= {\left( { - 1} \right) ^{{\alpha _{cb}} + 1}}\frac{{Q_{cb}^{{\alpha _{cb}}}{e^{{Q_{cb}}}}U}}{{{J_{cb}}\Gamma \left( {{\alpha _{cb}}} \right) }}\sum \limits _{l = 0}^{{\alpha _{cb}} - 1} {\left( {\begin{array}{*{20}{c}} {{\alpha _{cb}} - 1}\\ l \end{array}} \right) } {\left( {\frac{U}{{{J_{cb}}}}} \right) ^l} \nonumber \\&\quad \times \left\{ {\mathcal{R}\left( {{{\left[ {m - {L_{cb}}} \right] }^{ - 1}},{W_{cb}},l} \right) - \mathcal{R}\left( {{{\left[ {n - {L_{cb}}} \right] }^{ - 1}},{W_{cb}},l} \right) } \right\} , \end{aligned}$$
(84)

where

$$\begin{aligned} \mathcal{R}\left( {s,u,p} \right) = \frac{{{s^p}}}{u}{e^{us}}\left( {1 + \sum \limits _{k = 1}^p {{{\left( { - us} \right) }^{ - k}}\prod \limits _{i = 0}^{k - 1} {\left( {p - i} \right) } } } \right) . \end{aligned}$$
(85)

Appendix C: Proof of Lemma 1

Substituting \({{\hat{C}_a}}\) in (22) into \(\Delta \) in (25), one obtains

$$\begin{aligned} \Delta = \Pr \left\{ {\left. {1 + {\Theta _b} < K\left( {1 + {\Theta _{Wa}}} \right) } \right| {C_c} \ge \bar{C}} \right\} , \end{aligned}$$
(86)

where K is defined in (32).

Invoking (14) and (17) for the case of \({{C_c} \ge {\bar{C}}}\), (86) is rewritten as

$$\begin{aligned} \Delta = \Pr \left\{ {{Z_{cb}} < K{Z_{cw}}} \right\} , \end{aligned}$$
(87)

where \(Z_{cb}\) and \(Z_{cw}\) are defined in (74) and (75), correspondingly.

Due to statistical independence of \(Z_{cb}\) in (74) and \(Z_{cw}\) in (75), their joint pdf is the product of their individual pdfs. Consequently, \(\Delta \) in (87) can be computed as

$$\begin{aligned} \Delta = \iint \limits _{z < Kt} {{f_{{Z_{cb}}}}\left( z \right) {f_{{Z_{cw}}}}\left( t \right) dzdt}. \end{aligned}$$
(88)

Since \(f_{Z_{cb}}\left( z\right) \) in (79) is non-zero for \(z \in [1, L_{cb})\), the double integral in (88) can be solved by considering three cases of Kt in correlation to \([1, L_{cb})\): (Case 1: \(Kt < 1\)), (Case 2: \(1 \le Kt < L_{cb}\)), (Case 3: \(Kt > L_{cb}\)). “Case 1” means \(t< K^{-1} < 1\) and hence, \(\Delta \) for this case is \(\int \limits _{t < {K^{ - 1}}} {\left[ {\int \limits _0^{Kt} {{f_{{Z_{cb}}}}\left( z \right) dz} } \right] {f_{{Z_{cw}}}}\left( t \right) dt}=0\) because \({{f_{{Z_{cw}}}}\left( t \right) }\) in (80) is zero for \(t < 1\). Meanwhile, “Case 2” and “Case 3” respectively mean \(K^{-1} \le t<V\) and \(t>V\) where V is given in (35). Therefore, (88) is rewritten for “Case 2” and “Case 3” as

$$\begin{aligned} \Delta = \int \limits _{{K^{ - 1}} \le t < V} {\left[ {\int \limits _{z = 1}^{Kt} {{f_{{Z_{cb}}}}\left( z \right) dz} } \right] {f_{{Z_{cw}}}}\left( t \right) dt} + \int \limits _{t > V} {\left[ {\int \limits _{z = 1}^{{L_{cb}}} {{f_{{Z_{cb}}}}\left( z \right) dz} } \right] {f_{{Z_{cw}}}}\left( t \right) dt}. \end{aligned}$$
(89)

Since \({{f_{{Z_{cw}}}}\left( t \right) }\) is non-zero for \(t \in [1, L_{cw})\), in order to determine integral limits for t in (89), one must consider whether V falls in \([1, L_{cw})\) or not. Consequently, three contexts for V are investigated as follows.


Context 1: \(L_{cw}<V\)

Under this context, the second term in (89) is zero since \({{f_{{Z_{cw}}}}\left( t \right) }=0\) as \(t=V>L_{cw}\). Consequently, (89) is simplified as

$$\begin{aligned} {\Delta _1} = \int \limits _{t = 1}^{{L_{cw}}} {\left[ {\int \limits _{z = 1}^{Kt} {{f_{{Z_{cb}}}}\left( z \right) dz} } \right] {f_{{Z_{cw}}}}\left( t \right) dt}. \end{aligned}$$
(90)

The inner integral in (90) is solved by using (81) and hence,

$$\begin{aligned} {\Delta _1}&= \int \limits _1^{{L_{cw}}} {\mathcal{M}\left( {1,Kt,{S_{cb}}} \right) {f_{{Z_{cw}}}}\left( t \right) dt} \nonumber \\&= \int \limits _1^{{L_{cw}}} {\frac{{{{\left( { - {Q_{cb}}} \right) }^{{\alpha _{cb}} - 1}}}}{{{e^{ - {Q_{cb}}}}\Gamma \left( {{\alpha _{cb}}} \right) }}\sum \limits _{l = 0}^{{\alpha _{cb}} - 1} {\left( {\begin{array}{*{20}{c}} {{\alpha _{cb}} - 1}\\ l \end{array}} \right) } {{\left( {\frac{U}{{{J_{cb}}}}} \right) }^l} } \nonumber \\&\qquad \times \left\{ {\frac{{{e^{{W_{cb}}/\left( {1 - {L_{cb}}} \right) }}}}{{{{\left( {1 - {L_{cb}}} \right) }^l}}}\left( {1 + \sum \limits _{k = 1}^l {{{\left( {\frac{{{L_{cb}} - 1}}{{{W_{cb}}}}} \right) }^k}\prod \limits _{i = 0}^{k - 1} {\left( {l - i} \right) } } } \right) } \right. \nonumber \\&\quad - \frac{{{e^{{W_{cb}}/\left( {Kt - {L_{cb}}} \right) }}}}{{{{\left( {Kt - {L_{cb}}} \right) }^l}}}\left. {\left( {1 + \sum \limits _{k = 1}^l {{{\left( {\frac{{{L_{cb}} - Kt}}{{{W_{cb}}}}} \right) }^k}\prod \limits _{i = 0}^{k - 1} {\left( {l - i} \right) } } } \right) } \right\} {f_{{Z_{cw}}}}\left( t \right) dt. \end{aligned}$$
(91)

Because \(\int \limits _1^{{L_{cw}}} {{f_{{Z_{cw}}}}\left( t \right) dt}=1\), (91) is simplified to (40) where

$$\begin{aligned} \mathcal{L}\left( {l,v} \right) = \int \limits _1^{{L_{cw}}} {\frac{{{e^{v/\left( {t - V} \right) }}}}{{{{\left( {t - V} \right) }^l}}}{f_{{Z_{cw}}}}\left( t \right) dt}. \end{aligned}$$
(92)

Consequently, the next step of the proof is to prove that (92) coincides (44). To this end, inserting \({{f_{Z_{cw}}}\left( t \right) }\) in (80) into (92) and after some simplications, one reduces (92) to

$$\begin{aligned} \mathcal{L}\left( {l,v} \right)&= \int \limits _1^{{L_{cw}}} {\frac{{{e^{v/\left( {t - V} \right) }}}}{{{{\left( {t - V} \right) }^l}}}\frac{{Q_{cw}^{{\alpha _{cw}}}{e^{{Q_{cw}}}}U}}{{{J_{cw}}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{\frac{{{W_{cw}}}}{{t - {L_{cw}}}}}}\frac{{{{\left( {t - 1} \right) }^{{\alpha _{cw}} - 1}}}}{{{{\left( {{L_{cw}} - t} \right) }^{{\alpha _{cw}} + 1}}}}dt} \nonumber \\&= \frac{{Q_{cw}^{{\alpha _{cw}}}{e^{{Q_{cw}}}}U}}{{{J_{cw}}\Gamma \left( {{\alpha _{cw}}} \right) }}\int \limits _1^{{L_{cw}}} {\frac{{{{\left( {t - 1} \right) }^{{\alpha _{cw}} - 1}}}}{{{{\left( {t - V} \right) }^l}{{\left( {{L_{cw}} - t} \right) }^{{\alpha _{cw}} + 1}}}}{e^{\frac{v}{{t - V}} + \frac{{{W_{cw}}}}{{t - {L_{cw}}}}}}dt}. \end{aligned}$$
(93)

Executing consecutive variable transforms (\({z = 1/\left( {t - L_{cw}} \right) }\) and then \({t = - z}\)), one simplifies (93) to

$$\begin{aligned} \mathcal{L}\left( {l,v} \right)&= \frac{{{{\left( {{L_{cw}} - 1} \right) }^{{\alpha _{cw}} - 1}}Q_{cw}^{{\alpha _{cw}}}U}}{{{{\left( {{L_{cw}} - V} \right) }^l}{J_{cw}}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{{Q_{cw}} + \frac{v}{{{L_{cw}} - V}}}} \nonumber \\&\quad \times \int \limits _{\frac{1}{{{L_{cw}} - 1}}}^\infty {{t^l}\frac{{{{\left( {t - 1/\left[ {{L_{cw}} - 1} \right] } \right) }^{{\alpha _{cw}} - 1}}}}{{{{\left( {t + 1/\left[ {V - {L_{cw}}} \right] } \right) }^l}}}{e^{\frac{{v/{{\left( {{L_{cw}} - V} \right) }^2}}}{{t + 1/\left( {V - {L_{cw}}} \right) }} - {W_{cw}}t}}dt}. \end{aligned}$$
(94)

Performing the series expansion \({e^x} = \sum \limits _{n = 0}^\infty {\frac{{{x^n}}}{{n!}}}\) for the term \({e^{\frac{{v/{{\left( {{L_{cw}} - V} \right) }^2}}}{{t + 1/\left( {V - {L_{cw}}} \right) }}}}\) in (94) and then executing the binomial expansion, one achieves

$$\begin{aligned} \mathcal{L}\left( {l,v} \right)&= \frac{{{{\left( { - 1} \right) }^{{\alpha _{cw}} + 1}}Q_{cw}^{{\alpha _{cw}}}U}}{{{{\left( {{L_{cw}} - V} \right) }^l}{J_{cw}}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{{Q_{cw}} + \frac{v}{{{L_{cw}} - V}}}} \nonumber \\&\quad \times \sum \limits _{q = 0}^\infty {\sum \limits _{u = 0}^{{\alpha _{cw}} - 1} {\left( {\begin{array}{*{20}{c}} {{\alpha _{cw}} - 1}\\ u \end{array}} \right) } } \frac{{{{\left( {1 - {L_{cw}}} \right) }^u}{v^q}}}{{{{\left( {{L_{cw}} - V} \right) }^{2q}}q!}}\int \limits _{\frac{1}{{{L_{cw}} - 1}}}^\infty {\frac{{{t^{l + u}}{e^{ - {W_{cw}}t}}}}{{{{\left( {t + 1/\left[ {V - {L_{cw}}} \right] } \right) }^{l + q}}}}dt}. \end{aligned}$$
(95)

Executing the variable change \(z = t + {\left( {V - L_{cw}} \right) ^{ - 1}}\) and performing the binomial expansion, one simplifies (95) to (44) where

$$\begin{aligned} \eta&= \int \limits _I^\infty {\frac{{{z^t}}}{{{z^{l + q}}}}{e^{ - {W_{cw}}z}}dz} \nonumber \\&= \left\{ {\begin{array}{*{20}{c}} {\int \limits _I^\infty {{z^{t - l - q}}{e^{ - {W_{cw}}z}}dz} }&{}{,t > l + q}\\ {\int \limits _I^\infty {{e^{ - {W_{cw}}z}}dz} }&{}{,t = l + q}\\ {\int \limits _I^\infty {\frac{{{e^{ - {W_{cw}}z}}}}{{{z^{l + q - t}}}}dz} }&{}{,t < l + q} \end{array}} \right. \end{aligned}$$
(96)

with I being defined in (43). As such, the last step of the proof is to show that (96) coincides (45). To this end, the following notes should be paid attention. First, it is straightforward to solve the second integral in the last equality of (96). Second, the first integral has a common form as \(\mathcal {G}\left( {g,v,b} \right) = \int \limits _g^\infty {{t^{v - 1}}{e^{ - bt}}dt}\), which is analytically evaluated as (46) by invoking [31, eq. (3.381.3)]. Finally, the third integral has a general form as \(\mathcal {Y}\left( {v,g,n} \right) = \int \limits _v^\infty {\frac{{{e^{ - gt}}}}{{{t^{n + 1}}}}dt}\), which is also analytically evaluated as (47) by invoking [31, eq. (358.4)]. After solving these three integrals, (96) is simplified to (45), completing the proof of \(\Delta _1\).


Context 2: \(1\le V<L_{cw}\)

This condition reduces (89) to

$$\begin{aligned} {\Delta _2} = \int \limits _{t = {K^{ - 1}}}^V {\left[ {\int \limits _{z = 1}^{Kt} {{f_{{Z_{cb}}}}\left( z \right) dz} } \right] {f_{{Z_{cw}}}}\left( t \right) dt} + \int \limits _{t = V}^{{L_{cw}}} {\left[ {\int \limits _{z = 1}^{{L_{cb}}} {{f_{{Z_{cb}}}}\left( z \right) dz} } \right] {f_{{Z_{cw}}}}\left( t \right) dt}. \end{aligned}$$
(97)

Before solving (97), it should be reminded that \({{f_{{Z_{cb}}}}\left( z \right) }\) is non-zero for \(z\in \left[ 1, L_{cb}\right) \) and thus, \({\int \limits _{z = 1}^{{L_{cb}}} {{f_{{Z_{cb}}}}\left( z \right) dz} }=1\). Furthermore, \(\int \limits _1^{Kt} {{f_{{Z_{cb}}}}\left( z \right) dz}\) and \(\int \limits _V^{{L_{cw}}} {{f_{{Z_{cw}}}}\left( t \right) dt}\) are represented in closed-form as \(\mathcal{M}\left( {1,Kt,{S_{cb}}} \right) \) and \(\mathcal{M}\left( {V,{L_{cw}},{S_{cw}}} \right) \) according to (81), correspondingly, where \({S_{cb}} = \left\{ {U,{J_{cb}},{\xi _{cb}},{\alpha _{cb}},{\epsilon _b}} \right\} \) and \({S_{cw}} = \left\{ {U,{L_{cw}},{\xi _{cw}},{\alpha _{cw}},{\epsilon _w}} \right\} \) are the sets of parameters related to the \(\texttt {C}\rightarrow \texttt {B}\) and \(\texttt {C} \rightarrow \texttt {W}\) transmission. Accordingly, (97) is reduced to

$$\begin{aligned} {\Delta _2} = \int \limits _1^V {\mathcal{M}\left( {1,Kt,{S_{cb}}} \right) {f_{{Z_{cw}}}}\left( t \right) dt} + \mathcal{M}\left( {V,{L_{cw}},{S_{cw}}} \right) . \end{aligned}$$
(98)

Substituting \({\mathcal{M}\left( {1,Kt,{S_{cb}}} \right) }\) in (84) into (98) and after some manipulations, (98) is reduced to (48) where

$$\begin{aligned} \mathcal{Q}\left( {l,v} \right) = \int \limits _1^V {\frac{{{e^{v/\left( {t - V} \right) }}}}{{{{\left( {t - V} \right) }^l}}}{f_{{Z_{cw}}}}\left( t \right) dt}. \end{aligned}$$
(99)

Accordingly, the next step of the proof of \(\Delta _2\) is to prove that (99) is expressed as (49). To this end, inserting \({{f_{{Z_{cw}}}}\left( t \right) }\) in (80) into (99) and then executing consecutive variable transforms (\(z=1/\left( t-V\right) \) and then \(t=-z\)), one simplifies (99) to

$$\begin{aligned} \mathcal{Q}\left( {l,v} \right)&= \frac{{{{\left( { - 1} \right) }^l}Q_{cw}^{{\alpha _{cw}}}U}}{{{{\left( {V - {L_{cw}}} \right) }^{{\alpha _{cw}} + 1}}{J_{cw}}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{{Q_{cw}} + \frac{{{W_{cw}}}}{{V - {L_{cw}}}}}}\sum \limits _{u = 0}^{{\alpha _{cw}} - 1} {\left( {\begin{array}{*{20}{c}} {{\alpha _{cw}} - 1}\\ u \end{array}} \right) } {\left( {1 - V} \right) ^u} \nonumber \\&\quad \times \int \limits _{1/\left( {V - 1} \right) }^\infty {\frac{{{t^{l + u}}}}{{{{\left( {t + 1/\left[ {{L_{cw}} - V} \right] } \right) }^{{\alpha _{cw}} + 1}}}}{e^{\frac{{{W_{cw}}/{{\left( {V - {L_{cw}}} \right) }^2}}}{{t + 1/\left( {{L_{cw}} - V} \right) }} - vt}}dt}. \end{aligned}$$
(100)

Performing some similar (series and binomial expansions) manipulations as (92), one obtains (49) where

$$\begin{aligned} \theta = \int \limits _O^\infty {\frac{{{z^t}{e^{ - vz}}}}{{{z^{{\alpha _{cw}} + 1 + q}}}}dz}, \end{aligned}$$
(101)

which is further decomposed into three sub-cases as

$$\begin{aligned} \theta = \left\{ {\begin{array}{*{20}{c}} {\int \limits _O^\infty {{z^{t - {\alpha _{cw}} - 1 - q}}{e^{ - vz}}dz} }&{}{,t > {\alpha _{cw}} + 1 + q}\\ {\int \limits _O^\infty {{e^{ - vz}}dz} }&{}{,t = {\alpha _{cw}} + 1 + q}\\ {\int \limits _O^\infty {\frac{{{e^{ - vz}}}}{{{z^{{\alpha _{cw}} + 1 + q - t}}}}dz} }&{}{,t < {\alpha _{cw}} + 1 + q} \end{array}} \right. , \end{aligned}$$
(102)

where O is defined in (51). Consequently, the last step of the proof of \(\Delta _2\) is to show that (102) is reduced to (50). To this end, the following notes are helpful. First, it is easy to solve the second integral in the last equality of (102). Second, the first and the third integrals are represented in terms of \(\mathcal {G}\left( \cdot ,\cdot ,\cdot \right) \) and \(\mathcal {Y}\left( \cdot ,\cdot ,\cdot \right) \) in (46) and (47), correspondingly. After solving these three integrals, one reduces (102) to (50), finishing the proof of \(\Delta _2\).


Context 3: \(V<1\)

This condition reduces (89) to

$$\begin{aligned} \Delta = \int \limits _{t = {K^{ - 1}}}^V {\left[ {\int \limits _{z = 1}^{Kt} {{f_{{Z_{cb}}}}\left( z \right) dz} } \right] {f_{{Z_{cw}}}}\left( t \right) dt} + \int \limits _{t = 1}^{{L_{cw}}} {\left[ {\int \limits _{z = 1}^{{L_{cb}}} {{f_{{Z_{cb}}}}\left( z \right) dz} } \right] {f_{{Z_{cw}}}}\left( t \right) dt}. \end{aligned}$$
(103)

Since \({{f_{{Z_{cw}}}}\left( t \right) }=0\) for \(t=V<1\), the first term in (103) is zero. Moreover, \({{f_{{Z_{cb}}}}\left( z \right) }\) is non-zero for \(z\in \left[ 1,L_{cb}\right) \) and \({{f_{{Z_{cw}}}}\left( t \right) }\) is non-zero for \(t\in \left[ 1,L_{cw}\right) \) and therefore, the second term in (103) is one. Plugging these results into (103), one infers \(\Delta = 1\), which agrees with (28) for \(V<1\). This completes the proof of \(\Delta \) for \(V<1\).

By combining three above contexts, \(\Delta \) is proved to match (28), completing the proof of Lemma 1.

Appendix D: Proof of Lemma 2

Using (13) and (18) for the case of \({{C_c} \ge {\bar{C}}}\) to rewrite \(\Omega _1\) in (55) as

$$\begin{aligned} {\Omega _1} = \Pr \left\{ {1 + \frac{{\phi \left( {1 - \tau } \right) {P_c}{g_{cd}}}}{{\phi \tau {P_c}{g_{cd}} + {\epsilon _d}}} < K\left( {1 + \frac{{\phi \left( {1 - \tau } \right) {P_c}{g_{cw}}}}{{\left( {\phi \tau + 1 - \phi } \right) {P_c}{g_{cw}} + {\epsilon _w}}}} \right) } \right\} . \end{aligned}$$
(104)

It is seen from (87) and (104) that \(\Delta \) and \(\Omega _1\) have the same form. Consequently, the precise closed-form expression of \(\Omega _1\) can be taken from that of \(\Delta \) with appropriate variable substitutions as shown in Lemma 2, completing the proof.

Appendix E: Proof of Lemma 3

Let \({Z_{cd}} = 1 + \bar{K}{g_{cd}}\) and \({{\bar{Z}}_{cw}} = 1 + \frac{{\bar{H}{g_{cw}}}}{{\bar{M}{g_{cw}} + {\epsilon _w}}}\) where \(\bar{K}\), \(\bar{H}\), and \(\bar{M}\) are presented in (61), (59), and (58), respectively. Given the variable change, the pdf of \(Z_{cd}\) is taken from the pdf of \(g_{cd}\), \({f_{{g_{cd}}}}\left( z \right) \), as

$$\begin{aligned} {f_{{g_{cd}}}}\left( z \right) = \frac{1}{{\bar{K}}}{f_{{g_{cd}}}}\left( {\frac{{z - 1}}{{\bar{K}}}} \right) ,\mathrm{{ }}z \ge 1. \end{aligned}$$
(105)

Moreover, the pdf of \({\bar{Z}}_{cw}\) is given by

$$\begin{aligned} {f_{{{\bar{Z}}_{cw}}}}\left( t \right) = \frac{{\bar{Q}_{cw}^{{\alpha _{cw}}}{e^{{{\bar{Q}}_{cw}}}}\bar{H}}}{{\bar{M}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{\frac{{{{\bar{W}}_{cw}}}}{{t - \bar{U}}}}}\frac{{{{\left( {t - 1} \right) }^{{\alpha _{cw}} - 1}}}}{{{{\left( {\bar{U} - t} \right) }^{{\alpha _{cw}} + 1}}}},\ \ \ 1 \le t < \bar{U}, \end{aligned}$$
(106)

where \(\bar{U}\), \({{{\bar{Q}}_{cw}}}\) and \({{{\bar{W}}_{cw}}}\) are presented in (60), (63) and (64), respectively. Equation (106) is derived directly from the results in Appendix A.

Using (13) and (18) for the case of \({{C_c} < {\bar{C}}}\) to rewrite \(\Omega _2\) in (55) as

$$\begin{aligned} {\Omega _2} = \Pr \left\{ {1 + \frac{{\rho {P_c}{g_{cd}}}}{{{\epsilon _d}}} < K\left( {1 + \frac{{\rho {P_c}{g_{cw}}}}{{\left( {1 - \rho } \right) {P_c}{g_{cw}} + {\epsilon _w}}}} \right) } \right\} , \end{aligned}$$
(107)

which is also expressed in terms of \(Z_{cd}\) and \({\bar{Z}}_{cw}\) as

$$\begin{aligned} {\Omega _2} = \Pr \left\{ {{Z_{cd}} < K{{\bar{Z}}_{cw}}} \right\} . \end{aligned}$$
(108)

Since \(Z_{cd}\) and \({\bar{Z}}_{cw}\) are statistically independent, (108) can be expressed in terms of the individual pdfs of \(Z_{cd}\) and \({\bar{Z}}_{cw}\) as

$$\begin{aligned} {\Omega _2} = \iint \limits _{z < Kt} {{f_{{Z_{cd}}}}\left( z \right) {f_{{{\bar{Z}}_{cw}}}}\left( t \right) dzdt}. \end{aligned}$$
(109)

Since \({{f_{{Z_{cd}}}}\left( z \right) }\) is non-zero for \(z \ge 1\), the double integral in (109) can be solved by considering two cases of Kt in correlation to 1: (Case 1: \(Kt<1\)) and (Case 2: \(Kt>1\)). Therefore, (109) is rewritten in a compact form as

$$\begin{aligned} {\Omega _2} = \int \limits _{Kt< 1} {\left[ {\int \limits _{z < Kt} {{f_{{Z_{cd}}}}\left( z \right) dz} } \right] {f_{{{\bar{Z}}_{cw}}}}\left( t \right) dt} + \int \limits _{Kt > 1} {\left[ {\int \limits _{z = 1}^{Kt} {{f_{{Z_{cd}}}}\left( z \right) dz} } \right] {f_{{{\bar{Z}}_{cw}}}}\left( t \right) dt}. \end{aligned}$$
(110)

The first term in (110) is zero since \(\int \limits _{z < Kt} {{f_{{Z_{cd}}}}\left( z \right) dz} = 0\) owing to \({{f_{{Z_{cd}}}}\left( z \right) }=0\) for \(z=Kt < 1\). As such, by substituting (105) into the second term in (110) and after solving the inner integral in (110), one obtains

$$\begin{aligned} {\Omega _2}&= \int \limits _1^{\bar{U}} {\left[ {\int \limits _{z = 1}^{Kt} {\frac{1}{{\bar{K}}}{f_{{g_{cd}}}}\left( {\frac{{z - 1}}{{\bar{K}}}} \right) dz} } \right] {f_{{{\bar{Z}}_{cw}}}}\left( t \right) dt} \nonumber \\&= ^{x = \frac{{z - 1}}{{\bar{K}}}} \int \limits _1^{\bar{U}} {\left[ {\int \limits _0^{\frac{{Kt - 1}}{{\bar{K}}}} {{f_{{g_{cd}}}}\left( x \right) dx} } \right] {f_{{{\bar{Z}}_{cw}}}}\left( t \right) dt} \nonumber \\&= \int \limits _1^{\bar{U}} {{F_{{g_{cd}}}}\left( {\frac{{Kt - 1}}{{\bar{K}}}} \right) {f_{{{\bar{Z}}_{cw}}}}\left( t \right) dt} \nonumber \\&= \int \limits _1^{\bar{U}} {\frac{{\gamma \left( {{\alpha _{cd}},\left( {Kt - 1} \right) {\xi _{cd}}/\bar{K}} \right) }}{{\Gamma \left( {{\alpha _{cd}}} \right) }}{f_{{{\bar{Z}}_{cw}}}}\left( t \right) dt}. \end{aligned}$$
(111)

Executing the series expansion of \(\gamma \left( \cdot ,\cdot \right) \) in [31, eq. (8.352.1)] and then applying the binomial expansion, (111) reduces to

$$\begin{aligned} {\Omega _2}&= \int \limits _1^{\bar{U}} {\left[ {1 - {e^{ - \frac{{{\xi _{cd}}\left( {Kt - 1} \right) }}{{\bar{K}}}}}\sum \limits _{m = 0}^{{\alpha _{cd}} - 1} {\frac{1}{{m!}}{{\left\{ {\frac{{{\xi _{cd}}\left( {Kt - 1} \right) }}{{\bar{K}}}} \right\} }^m}} } \right] {f_{{{\bar{Z}}_{cw}}}}\left( t \right) dt} \nonumber \\&= 1 - \sum \limits _{m = 0}^{{\alpha _{cd}} - 1} {\sum \limits _{l = 0}^m {\left( {\begin{array}{*{20}{c}} m \\ l \end{array}} \right) } \frac{{{{\left( { - 1} \right) }^{m - l}}}}{{m!{K^{ - l}}}}{e^{\frac{{{\xi _{cd}}}}{{\bar{K}}}}}{{\left( {\frac{{{\xi _{cd}}}}{{\bar{K}}}} \right) }^m}} \underbrace{\int \limits _1^{\bar{U}} {{t^l}{e^{ - \bar{J}t}}{f_{{{\bar{Z}}_{cw}}}}\left( t \right) dt} }_\zeta \end{aligned}$$
(112)

where \(\bar{J}\) is defined in (62).

Inserting \({{f_{{{\bar{Z}}_{cw}}}}\left( t \right) }\) in (106) into (112), one obtains

$$\begin{aligned} \zeta&= \int \limits _1^{\bar{U}} {{t^l}{e^{ - \bar{J}t}}\frac{{\bar{Q}_{cw}^{{\alpha _{cw}}}{e^{{{\bar{Q}}_{cw}}}}\bar{H}}}{{\bar{M}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{\frac{{{{\bar{W}}_{cw}}}}{{t - \bar{U}}}}}\frac{{{{\left( {t - 1} \right) }^{{\alpha _{cw}} - 1}}}}{{{{\left( {\bar{U} - t} \right) }^{{\alpha _{cw}} + 1}}}}dt} \nonumber \\&= ^{z = \frac{1}{{t - \bar{U}}}} - \frac{{\bar{Q}_{cw}^{{\alpha _{cw}}}\bar{H}}}{{\bar{M}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{{{\bar{Q}}_{cw}} - \bar{U}\bar{J}}}\int \limits _{\frac{1}{{1 - \bar{U}}}}^{ - \infty } {{{\left( {\frac{1}{z} + \bar{U}} \right) }^l}{e^{{{\bar{W}}_{cw}}z - \frac{{\bar{J}}}{z}}}{{\left( {\left[ {1 - \bar{U}} \right] z - 1} \right) }^{{\alpha _{cw}} - 1}}dz} \nonumber \\&= ^{t = - z} \frac{{\bar{Q}_{cw}^{{\alpha _{cw}}}\bar{H}}}{{\bar{M}\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{{{\bar{Q}}_{cw}} - \bar{U}\bar{J}}}\int \limits _{\frac{1}{{\bar{U} - 1}}}^\infty {{{\left( {\bar{U} - \frac{1}{t}} \right) }^l}{e^{\frac{{\bar{J}}}{t} - {{\bar{W}}_{cw}}t}}{{\left( {\left[ {\bar{U} - 1} \right] t - 1} \right) }^{{\alpha _{cw}} - 1}}dt}. \end{aligned}$$
(113)

Executing the binomial expansion to reduce (113) to

$$\begin{aligned} \zeta = \frac{{\bar{W}_{cw}^{{\alpha _{cw}}}}}{{\Gamma \left( {{\alpha _{cw}}} \right) }}{e^{{{\bar{Q}}_{cw}} - \bar{U}\bar{J}}}\sum \limits _{j = 0}^l {\sum \limits _{g = 0}^{{\alpha _{cw}} - 1} {\left( {\begin{array}{*{20}{c}} {{\alpha _{cw}} - 1} \\ g \end{array}} \right) \left( {\begin{array}{*{20}{c}} l \\ j \end{array}} \right) {{\left( {\frac{{\bar{M}}}{{\bar{H}}}} \right) }^g}} {{\bar{U}}^j}{{\left( { - 1} \right) }^{l - g - j}}} \underbrace{\int \limits _{\bar{M}/\bar{H}}^\infty {{z^{\bar{m}}}{e^{\frac{{\bar{J}}}{z} - {{\bar{W}}_{cw}}z}}dz} }_{\hat{\zeta }}, \end{aligned}$$
(114)

where \(\bar{m}\) is defined in (65).

Applying the series expansion to \({e^{\bar{J}/x}}\), the last integral in (114) reduces to

$$\begin{aligned} \hat{\zeta } = \sum \limits _{u = 0}^\infty {\frac{{{{\bar{J}}^u}}}{{u!}}} \underbrace{\int \limits _{\bar{M}/\bar{H}}^\infty {\frac{{{z^{\bar{m}}}}}{{{z^u}}}{e^{ - {{\bar{W}}_{cw}}z}}dz} }_\beta . \end{aligned}$$
(115)

Dependent on the difference between \(\bar{m}\) and u, \(\beta \) in (115) has different values

$$\begin{aligned} \beta = \left\{ {\begin{array}{*{20}{c}} {\int \limits _{\bar{M}/\bar{H}}^\infty {{z^{\bar{m} - u}}{e^{ - {{\bar{W}}_{cw}}z}}dz} }&{}{,\bar{m} > u}\\ {\int \limits _{\bar{M}/\bar{H}}^\infty {{e^{ - {{\bar{W}}_{cw}}z}}dz} }&{}{,\bar{m} = u}\\ {\int \limits _{\bar{M}/\bar{H}}^\infty {\frac{{{e^{ - {{\bar{W}}_{cw}}z}}}}{{{z^{u - \bar{m}}}}}dz} }&{}{,\bar{m} < u} \end{array}} \right. \end{aligned}$$
(116)

Three integrals in (116) are solved as follows. The second integral is easy to solve while the first and the third integrals are represented in terms of \(\mathcal {G}\left( \cdot ,\cdot ,\cdot \right) \) and \(\mathcal {Y}\left( \cdot ,\cdot ,\cdot \right) \) in (46) and (47), correspondingly. Given solutions of these three integrals, one reduces (116) to (66). Moreover, inserting (116) into (115), then plugging (115) into (114) and finally substituting (114) into (112), one reduces (112) to (57), finishing the proof of Lemma 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang-Ngoc, H., Ho-Van, K. & Do-Dac, T. Secrecy Analysis of Overlay Mechanism in Radio Frequency Energy Harvesting Networks with Jamming under Nakagami-m fading. Wireless Pers Commun 120, 447–479 (2021). https://doi.org/10.1007/s11277-021-08468-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08468-2

Keywords

Navigation