Skip to main content

Advertisement

Log in

Practical Partner Selection of Chip-Interleaved Decode and Forward Cooperation in WSNs Subject to Frequency-Selective Fading

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper has investigated the feasibility of deploying a decode and forward (DF) cooperative protocol and a chip-interleaving signal processing in combination as a practical energy-saving technique to prolong the lifetime of WSNs operating over AWGN channels subject to frequency-selective Rayleigh fading. This work firstly aims to quantify the BER performance of a chip-interleaved DF (CIDF) cooperation in WSNs. Following, it is extended to analyze an energy efficient CIDF cooperation from the perspective of optimally distributing the transmit power and choosing an ideal cooperating node. Finally, Matlab evaluations of theoretical findings have been provided. Results indicate that the proposed partner selection rules are computationally efficient, and can be easily used by sensor nodes to improve the system’s energy efficiency effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shah, A. F. M. S., & Islam, S. (2017). A survey on cooperative communication in wireless networks. International Journal of Intelligent Systems and Applications (IJISA), 6(7), 66.

    Article  Google Scholar 

  2. Huang, J. H., & Hsu, S. Y. (2020). QoS provisioning in energy-efficient cooperative networks with power assignment and relay deployment planning. Wireless Networks, 26, 5207–5222.

    Article  Google Scholar 

  3. Zhang, R., Qi, C., Li, Y., Ruan, Y., Wang, C.-X., & Zhang, H. (2019). Towards energy-efficient underlaid device-to-device communications: a joint resource management approach. IEEE Access, 7, 31385–31396.

    Article  Google Scholar 

  4. Guo, S., Zhou, X., & Zhou, X. (2020). Energy-efficient resource allocation in SWIPT cooperative wireless networks. IEEE Systems Journals, 99, 1–12.

    Google Scholar 

  5. Sachan, A., Nigam, S., & Bajpai, A. (2018). An energy efficient virtual-MIMO communication for cluster based cooperative wireless sensor network. In 2018 9th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–6).

  6. Shuguang, C., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  7. Saleh, A. A. M., & Valenzuela, R. A. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.

    Article  Google Scholar 

  8. Abarghouei, M. B., & Hoseini, A. M. D. (2011). Cooperative communication with imperfect channel information: performance analysis and optimum power allocation. Physical Communication, 4(3), 144–155.

    Article  Google Scholar 

  9. Chu, S.-I., Lin, W.-C., Lee, H.-P., & Chang, H.-C. (2013). Performance analysis and power allocation for decode-and-forward cooperative communications over Rician fading channel. Wireless Communications and Mobile Computing, 13(16), 1464–1481.

    Google Scholar 

  10. Yuh-Ren, T., & Li-Cheng, L. (2010). Optimal power allocation for decode-and-forward cooperative diversity under an outage performance constraint. IEEE Communications Letters, 14(10), 945–947.

    Article  Google Scholar 

  11. Mo, Z., Su, W., Batalama, S., & Matyjas, J. D. (2014). Cooperative communication protocol designs based on optimum power and time allocation. IEEE Transactions on Wireless Communications, 13(8), 4283–4296.

    Article  Google Scholar 

  12. Ding, Z., Xing, S., Yan, F., & Shen, L. (2019). Impact of optimal hop distance on the network lifetime for wireless sensor networks with QoS requirements. IEEE Communications Letters, 23(3), 534–537.

    Article  Google Scholar 

  13. Zappone, A., Atapattu, S., Di Renzo, M., Evans, J., & Debbah, M. (2018). Energy-efficient relay assignment and power control in multi-user and multi-relay networks. IEEE Wireless Communications Letters, 7(6), 1070–1073.

    Article  Google Scholar 

  14. Atapattu, S., Dharmawansa, P., Di Renzo, M., Tellambura, C., & Evans, J. S. (2019). Multi-user relay selection for full-duplex radio. IEEE Transactions on Communications, 67(2), 955–972.

    Article  Google Scholar 

  15. Yang, Z., Ding, Z., Wu, Y., & Fan, P. (2017). Novel relay selection strategies for cooperative NOMA. IEEE Transactions on Vehicular Technology, 66(11), 10114–10123.

    Article  Google Scholar 

  16. Xu, P., Yang, Z., Ding, Z., & Zhang, Z. (2018). Optimal relay selection schemes for cooperative NOMA. IEEE Transactions on Vehicular Technology, 67(8), 7851–7855.

    Article  Google Scholar 

  17. Berber, S.M., Yuan, Y., & Suh, B. (2013). Derivation of BER expressions and simulation of a chip interleaved system for WSNs application. In Proceedings of the 17th WSEAS international conference on communications, Rhodos, Greece (pp. 16–19).

  18. Cai, Y., Lamare, R. C. D., & Fa, R. (2011). Switched interleaving techniques with limited feedback for interference mitigation in DS-CDMA systems. IEEE Transactions on Communications, 59(7), 1946–1956.

    Article  Google Scholar 

  19. Gui, X. (2014). Chip-interleaving direct sequence spread spectrum system over Rician multipath fading channels. Wireless Communications and Mobile Computing, 14(1), 64–73.

    Article  Google Scholar 

  20. Berber, S., & Chen, N. (2013). Physical layer design in wireless sensor networks for fading mitigation. Journal of Sensor and Actuator Networks, 2(3), 614–630.

    Article  Google Scholar 

  21. Valluri, A.K., La, R.J., & Shayman, M.A. (2014). Precoder detection for cooperative decode-and-forward relaying in OFDMA systems. In Military communications conference (MILCOM), 2014 IEEE (pp. 1586–1594). IEEE.

  22. He Chen, J., Liu, L. Z., Zhai, C., & Zhou, Y. (2010). Approximate SEP analysis for DF cooperative networks with opportunistic relaying. IEEE Signal Processing Letters, 17(9), 779–782.

    Article  Google Scholar 

  23. Lu, T., Ge, J., Yang, Y., & Gao, Y. (2013). Accurate BER analysis and optimum power allocation for adaptive decode-and-forward relaying with frame transmissions. In Wireless communications and networking conference (WCNC), 2013 IEEE (pp. 3471–3475). IEEE.

  24. Bhatnagar, M. R. (2012). Average BER analysis of differential modulation in DF cooperative communication system over gamma-gamma fading FSO links. IEEE Communications Letters, 16(8), 1228–1231.

    Article  Google Scholar 

  25. Hong, Y.-W., Huang, W.-J., Chiu, F.-H., & Kuo, C.-C.J. (2007). Cooperative communications in resource-constrained wireless networks. IEEE Signal Processing Magazine, 24(3), 47–57.

    Article  Google Scholar 

  26. Tian, J. J., Berber, S., & Rowe, G. (2017). Energy efficient cooperation with chip-interleaved transceivers in WSNS over frequency-selective fading channels. Wireless Personal Communications, 95(4), 3933–3953.

    Article  Google Scholar 

  27. Herhold, P., Zimmermann, E., & Fettweis, G. (2004). A simple cooperative extension to wireless relaying. In 2004 International Zurich Seminar on Communications (pp. 36–39). IEEE.

  28. Shuguang, C., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  29. Tian, J. J., Berber, S., & Rowe, G. (2018). Performance analysis of energy efficient cooperations in WSNS over frequency-selective channels. Wireless Networks, 24(7), 2631–2643.

    Article  Google Scholar 

  30. Molisch, A.F., Balakrishnan, K., Cassioli, D., Chong, C.-C., Emami, S., Fort, A., Karedal, J., Kunisch, J., Schantz, H., & Schuster, U. (2004). IEEE 802.15. 4a channel model-final report 15(04):0662.

  31. ATMEL Products. (2009) AT86RF212. http://www.atmel.com/dyn/products/ product_card.asp?PN=AT86RF212. Accessed 5 Jul 2009.

Download references

Acknowledgements

Supported by the Jiangsu Industry-University-Research Collaboration Project (No. BY2020491), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2019D17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjie Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Berber, S. & Zhang, L. Practical Partner Selection of Chip-Interleaved Decode and Forward Cooperation in WSNs Subject to Frequency-Selective Fading. Wireless Pers Commun 121, 557–575 (2021). https://doi.org/10.1007/s11277-021-08650-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08650-6

Keywords

Navigation