Skip to main content
Log in

Spectral Analysis of the Queueing Model for IEEE 802.16 Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Worldwide Interoperability for microwave access (WiMAX) based on the IEEE 802.16 standard has become one of the most promising wireless technologies and been widely applied for the provision of broadband wireless access in the fourth-generation communication networks. In this paper, we investigate the performance of IEEE 802.16 wireless networks with the contention-based bandwidth (BW) request scheme in non-saturation mode. Taking into account the buffer content as well as the backoff stage and backoff counter processes , we model the dynamics of the contention BW request scheme by a 3-dimensional Markov chain. We derive its steady state probability using the spectral analysis method and obtain some key performance measures such as system efficiency, loss probability, mean number of packets in the buffer and mean head-of-line (HoL) delay. These results are useful in determining an optimization configuration for the efficient operation of the IEEE 802.16 wireless networks. Insert your abstract here. Include keywords, PACS and mathematical subject classification numbers as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 
Fig. 8

Similar content being viewed by others

References

  1. Bae, Y. H., Kim, K. J., Moon, M. N., & Choi, B. D. (2008). Analysis of IEEE 802.11 non-saturated DCF by matrix analytic methods. Annals of Operations Research, 162, 3–18.

    Article  MathSciNet  Google Scholar 

  2. Bianchi, G. (2000). Performance analysis of the IEEE802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  3. Chan, S., Vu, H. L., & Liu, J. Q. (2014). Performance analysis and optimization of best-effort service in IEEE 802.16 networks. Wireless Communications and Mobile Computing, 14, 254–268.

    Article  Google Scholar 

  4. Chuck, D., Chen, K.-Y., & Chang, J. M. (2010). A comprehensive analysis of bandwidth request mechanisms in IEEE 802.16 networks. IEEE Transactions on Vehicular Technology, 59, 2046–2056.

    Article  Google Scholar 

  5. Cicconetti, C., Eklund, C., Lenzini, L., & Mingozzi, E. (2006). Quality of service support in IEEE 802.16 networks. IEEE Networks, 20, 50–55.

    Article  Google Scholar 

  6. Cicconetti, C., Erta, A., Lenzini, L., & Mingozzi, E. (2007). Performace evaluation of the IEEE 802.16 MAC for QoS support. IEEE Transactions on Mobile Computing, 6, 26–38.

    Article  Google Scholar 

  7. Fallah, Y. P., Agharebparast, F., Minhas, M. R., Alnuweiri, H. M., & Leung, V. C. M. (2008). Analysis modeling of contention-based bandwidth request mechanism in IEEE 802.16 wireless networks. IEEE Transactions on Vehicular Technology, 57, 3094–3107.

    Article  Google Scholar 

  8. Feng, W. (2016). On a special analysis of IEEE 802.11 queueing networks. Wireless Networks, 22, 159–173.

    Article  Google Scholar 

  9. Feng, W. (2020). Performance analysis of IEEE802.11e EDCA wireless networks under finite load. Wireless Networks, Wireless Networks, 26, 4431–4457.

    Article  Google Scholar 

  10. Gail, H. R., Hantler, S. L., Konheim, A. G., & Taylor, B. A. (1994). An analysis of a class of telecommunications models. Performance Evaluation, 21, 151–161.

    Article  MathSciNet  Google Scholar 

  11. Gail, H. R., Hantler, S. L., Sidi, M., & Taylor, B. A. (1995). Linear independence of root equations for M/G/1 type Markov chains. Queueing Systems, 20, 321–339.

    Article  MathSciNet  Google Scholar 

  12. Gail, H. R., Hantler, S. L., & Taylor, B. A. (1996). Spectral analysis of M/G/1 and G/M/1 type Markov chains. Advances in Applied Probability, 28, 114–165.

    Article  MathSciNet  Google Scholar 

  13. Ghosh, A., Wolter, D. R., Andrews, J. G., & Chen, R. (2005). Broadband wireless access with WiMAX/802.16: Current performance benchmarks and future potential. IEEE Communications Magazine, 43, 129–136.

    Article  Google Scholar 

  14. Hoymann, C. (2005). Analysis and performance evaluation of the OFDM-based metropolitan area network IEEE 802.16. Computing Networks, 49, 341–363.

    Article  Google Scholar 

  15. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, ANSI/IEEE Std. 802.16-2004.

  16. Ismael, F. E., Yusof, S. K. S., & Fisal, N. (2013). Bandwidth grant algorithm for delay reduction in IEEE 802.16j MMR WiMax networks. International Journal on Communications Antenna and Propagation, 3, 140–145.

    Google Scholar 

  17. Kim, S. and Yeom, I. (2006). Performance analysis of best effort traffic in IEEE 802.16 networks. In Dept Comput Sci, Korea Advanced Inst Sci Technol 2006, Tech Rep CS-TR-2008-285.

  18. Kim, K. J., Kim, B., Um, J. W., Son, J. J., & Choi, B. D. (2008). Delay analysis of extended rtPS for VoIP service in IEEE 802.16e by matrix analytic methoed. Annals of Operations Research, 162, 85–107.

    Article  MathSciNet  Google Scholar 

  19. Nishimura, S. (2000). A spectral analysis for a MAP/D/1 queue, In Latouche, G., & Taylor, P., (Eds.) Advances in algorithmic methods for stochastic models, 279–294.

  20. Nishimura, S., & Jiang, Y. (2000). Spectral analysis of the matrix generating function for an MAP/SM/1 queue. Stochastic Models, 16, 99–120.

    Article  MathSciNet  Google Scholar 

  21. Prasad, R., & Velez, F. J. (2010). WiMAX networks. Berlin: Springer.

    Book  Google Scholar 

  22. Saffer, Z., Andreev, S., & Koucheryavy, Y. (2010). Modeling the influence of the real-time traffic on the delay of the non real-time traffic in IEEE 802.16 networks. In MACOM 2010. LNCS,6235, 151–162.

  23. Vu, H. L., Chan, S., & Andrew, L. L. H. (2010). Performance analysis of best effort service in saturated IEEE 802.16 wireless networks. IEEE Transactions on Vehicular Technology, 59, 460–472.

    Article  Google Scholar 

  24. Wang, C., Yan, W.-J., & Lo, H.-K. (2012). Dynamic admission control and bandwidth reservation for IEEE 802.16e mobile WiMax netwroks. EURASIP Journal on Wireless Communications and Networking, 2012, 1–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The component matrices of the transition probability matrix \({\varvec{P}}\)

.

Let \(W=(2^{m+1}-1)W_0+(m+1)(M-1)\), we have

$$\begin{array}{*{20}l} {{\bar{\user2 C}}_{0} = \left( {r_{0}^{{(T_{f} )}} } \right),} \hfill \\ {{\bar{\user2 C}}_{1} = \left( {\begin{array}{*{20}c} {\user2{C}_{{10}} } \\ {\user2{C}_{{11}} } \\ \vdots \\ {\user2{C}_{{1m}} } \\ \end{array} } \right)_{{W \times 1}} ,} \hfill \\ {C_{{1i}} = \left( {\begin{array}{*{20}c} {(1 - p)qa_{0}^{{i*}} } \\ 0 \\ \vdots \\ 0 \\ {qr_{0}^{{(T_{f} )}} } \\ \vdots \\ {qr_{0}^{{(T_{f} )}} } \\ \end{array} } \right)_{{(W_{i} + M - 1) \times 1}} (0 \le i \le m).} \hfill \\ {C_{2} = \left( {\begin{array}{*{20}c} {\user2{C}_{{20}} } & 0 & \cdots & 0 \\ \user2{C} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ {\user2{C}_{{2m}} } & 0 & \cdots & 0 \\ \end{array} } \right)_{{W \times W,}} } \hfill \\ \end{array}$$

where

$$\begin{aligned} {\varvec{C}}_{2i}= {} \left( \begin{array}{ccc|ccccccc} (1-p)qa^{i*}_0\frac{1}{W_0} {} \cdots {} (1-p)qa^{i*}_0\frac{1}{W_0} {} 0 {} \cdots {} 0\\ 0 {} \cdots {} 0 {} \vdots {} \ddots {} \vdots \\ \vdots {} \ddots {} \vdots {} \vdots {} \ddots {} \vdots \\ 0 {} \cdots {} 0 {} 0 {} \cdots {} 0 \\ \hline qr_0^{(T_f)}\frac{1}{W_0} {} \cdots {} qr_0^{(T_f)}\frac{1}{W_0} {} 0 {} \cdots {} 0\\ \vdots {} \ddots {} \vdots {} \cdots {} \vdots \\ qr_0^{(T_f)}\frac{1}{W_0} {} \cdots {} qr_0^{(T_f)}\frac{1}{W_0} {} 0 {} \cdots {} 0\\ \end{array} \right) _{(W_i+M-1)\times (W_0+M-1)} (0\le i\le m).\\ \overline{{\varvec{A}}}_k= {} \left( {\varvec{A}}_{k0}, {\varvec{A}}_{k1}, \cdots , {\varvec{A}}_{km} \right) _{1\times W} \end{aligned}$$

where for \(i=0, 1,\cdots , m\)

$$\begin{aligned} {\varvec{A}}_{k0}& = \left( r_0^{(T_f)}\frac{1}{W_0}\ \cdots \ r_0^{(T_f)}\frac{1}{W_0}\ |\ 0 \cdots 0\right) _{1\times (W_0+M-1)} , {\varvec{A}}_{ki}=\left( 0 \cdots 0 \right) _{1\times (W_i+M-1)}. \\ {\varvec{B}}_k& = \left( \begin{array}{ccccccc} {\varvec{E}}^{(k)}_{0} &{} {\varvec{F}}_{1}^{(k)} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} \mathbf{0} \\ {\varvec{E}}^{(k)}_{1} &{} {\varvec{H}}_{1}^{(k)} &{}{\varvec{F}}_{2}^{(k)}&{} \cdots &{} \mathbf{0}&{} \mathbf{0}\\ {\varvec{E}}^{(k)}_{2} &{} {\varvec{0}} &{}{\varvec{H}}_{2}^{(k)}&{} \cdots &{} \mathbf{0} &{} \mathbf{0}\\ \vdots &{} \vdots &{}\vdots &{} \ddots &{} \vdots &{} \vdots \\ {\varvec{E}}^{(k)}_{m-1} &{} {\varvec{0}} &{}{\varvec{0}} &{} \cdots &{} {\varvec{H}}_{m-1}^{(k)} &{} {\varvec{F}}_{m}^{(k)}\\ {\varvec{E}}_{m}^{(k)} &{} {\varvec{0}} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} {\varvec{H}}_{m}^{(k)} \\ \end{array} \right) _{W\times W} \end{aligned}$$

where

$$\begin{aligned} {\varvec{E}}^{(k)}_{0}& = \left( \begin{array}{cc} {\varvec{E}}^{1}_{0} &{} {\varvec{E}}^{3}_{0} \\ {\varvec{E}}^{2}_{0} &{} {\varvec{E}}^{4}_{0} \end{array} \right) \\ {\varvec{E}}^{1}_{0}& = \left( \begin{array}{ccccc} (1-p)qa_{k}^{0*}\frac{1}{W_{0}} &{} (1-p)qa_{k}^{0*}\frac{1}{W_{0}} &{} \cdots &{} \cdots &{} (1-p)qa_{k}^{0*}\frac{1}{W_{0}} \\ r_{k-1}^{(\sigma )} \overline{\beta _{1}^{0}} + r_{k-1}^{(\sigma + T)}\beta _{1}^{0} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} r_{k-1}^{(\sigma )} \overline{\beta _{2}^{0}} + r_{k-1}^{(\sigma + T)}\beta _{2}^{0} &{} \ddots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} r_{k-1}^{(\sigma )} \overline{\beta _{W_{0}-1}^{0}} + r_{k-1}^{(\sigma + T)}\beta _{W_{0}-1}^{0} &{} 0 \end{array} \right) _{W_{0} \times W_{0}}\\ {\varvec{E}}^{2}_{0}& = \left( \begin{array}{ccc} qr_{k}^{(T_{f})}\frac{1}{W_{0}} &{} \cdots &{} qr_{k}^{(T_{f})}\frac{1}{W_{0}} \\ \vdots &{} \ddots &{} \vdots \\ qr_{k}^{(T_{f})}\frac{1}{W_{0}} &{} \cdots &{} qr_{k}^{(T_{f})}\frac{1}{W_{0}} \end{array} \right) _{(M-1) \times W_{0}} \\ {\varvec{E}}^{3}_{0}& = \left( \begin{array}{cccc} (1-p)(1-q)a_{k-1}^{0*} &{} 0 &{} \cdots &{} 0 \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right) _{W_{0} \times (M-1)}\\ {\varvec{E}}^{4}_{0}& = \left( \begin{array}{ccccc} 0 &{} (1-q)r_{k-1}^{(T_{f})} &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ \vdots &{} &{} \ddots &{} \ddots &{} 0 \\ \vdots &{} &{} &{} \ddots &{} (1-q)r_{k-1}^{(T_{f})} \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{(M-1) \times (M-1)}.\\ {\varvec{E}}^{(k)}_{i}& = \left( \begin{array}{cc} {\varvec{E}}^{1}_{i} &{} {\varvec{0}} \\ {\varvec{E}}^{2}_{i} &{} {\varvec{0}} \end{array} \right) , \quad 1\le i \le m\\ {\varvec{E}}^{1}_{i}& = \left( \begin{array}{ccc} (1-p)qa_{k}^{i*}\frac{1}{W_{0}} &{} \cdots &{} (1-p)qa_{k}^{i*}\frac{1}{W_{0}} \\ 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 \end{array} \right) _{W_{i} \times W_{0}} \\ {\varvec{E}}^{2}_{i}& = \left( \begin{array}{ccc} qr_{k}^{(T_{f})}\frac{1}{W_{0}} &{} \cdots &{} qr_{k}^{(T_{f})}\frac{1}{W_{0}} \\ \vdots &{} \ddots &{} \vdots \\ qr_{k}^{(T_{f})}\frac{1}{W_{0}} &{} \cdots &{} qr_{k}^{(T_{f})}\frac{1}{W_{0}} \end{array} \right) _{(M-1) \times W_{0}}\\ {\varvec{F}}^{(k)}_{i}& = \left( \begin{array}{cc} {\varvec{F}}^{1}_{i} &{} {\varvec{0}} \\ {\varvec{E}}^{2}_{i} &{} {\varvec{0}} \end{array} \right) , \quad 1\le i \le m \end{aligned}$$
$$\begin{aligned} {\varvec{F}}^{1}_{i}& = \left( \begin{array}{ccc} pa_{k-1}^{(i-1)c}\frac{1}{W_{i}} &{} \cdots &{} pa_{k-1}^{(i-1)c}\frac{1}{W_{i}} \\ 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 \end{array} \right) _{W_{i-1} \times W_{i}} \\ {\varvec{E}}^{2}_{i}& = \left( \begin{array}{ccc} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 \\ (1-q)r_{k-1}^{(T_{f})}\frac{1}{W_{i}} &{} \cdots &{} (1-q)r_{k-1}^{(T_{f})}\frac{1}{W_{i}} \end{array} \right) _{(M-1) \times W_{i}}\\ {\varvec{H}}^{(k)}_{i}& = \left( \begin{array}{cc} {\varvec{H}}^{1}_{i} &{} {\varvec{H}}^{3}_{i} \\ {\varvec{0}} &{} {\varvec{H}}^{4}_{i} \end{array} \right) , 1\le i \le m-1\\ {\varvec{H}}^{1}_{i}& = \left( \begin{array}{ccccc} 0 &{} \cdots &{} \cdots &{} \cdots &{} 0 \\ r_{k-1}^{(\sigma )}\overline{\beta _{1}^{i}} + r_{k-1}^{(\sigma + T)}\beta _{1}^{i} &{} \ddots &{} &{} &{} \vdots \\ 0 &{} r_{k-1}^{(\sigma )}\overline{\beta _{2}^{i}} + r_{k-1}^{(\sigma + T)}\beta _{2}^{i} &{} \ddots &{} &{} \vdots \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 &{} r_{k-1}^{(\sigma )}\overline{\beta _{W_{i}-1}^{i}} + r_{k-1}^{(\sigma + T)}\beta _{W_{i}-1}^{i} &{} 0 \end{array} \right) _{W_{i} \times W_{i}}\\ {\varvec{H}}^{3}_{i}& = \left( \begin{array}{cccc} (1-p)(1-q)a_{k-1}^{i*} &{} 0 &{} \cdots &{} 0 \\ 0 &{} \cdots &{} \cdots &{} 0 \\ \vdots &{} &{} &{} \vdots \\ 0 &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{W_{i} \times (M-1)}\\ {\varvec{H}}^{4}_{i}& = \left( \begin{array}{ccccc} 0 &{} (1-q)r_{k-1}^{(T_{f})} &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ \vdots &{} &{} \ddots &{} \ddots &{} 0 \\ \vdots &{} &{} &{} \ddots &{} (1-q)r_{k-1}^{(T_{f})} \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{(M-1) \times (M-1)}\\ {\varvec{H}}^{(k)}_{m}& = \left( \begin{array}{cc} {\varvec{H}}_{m}^{1} &{} {\varvec{H}}_{m}^{3} \\ {\varvec{H}}_{m}^{2} &{} {\varvec{H}}_{m}^{4} \end{array} \right) \\ {\varvec{H}}_{m}^{1}& = \left( \begin{array}{ccccc} pa_{k-1}^{mc}\frac{1}{W_{m}} &{} pa_{k-1}^{mc}\frac{1}{W_{m}} &{} \cdots &{} \cdots &{} pa_{k-1}^{mc}\frac{1}{W_{m}} \\ r_{k-1}^{(\sigma )}\overline{\beta _{1}^{m}} + r_{k-1}^{(\sigma + T)}\beta _{1}^{m} &{} \ddots &{} &{} &{} \vdots \\ 0 &{} r_{k-1}^{(\sigma )}\overline{\beta _{2}^{m}} + r_{k-1}^{(\sigma + T)}\beta _{2}^{m} &{} \ddots &{} &{} \vdots \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 &{} r_{k-1}^{(\sigma )}\overline{\beta _{W_{m}-1}^{m}} + r_{k-1}^{(\sigma + T)}\beta _{W_{m}-1}^{m} &{} 0 \end{array} \right) _{W_{m} \times W_{m}}\\ {\varvec{H}}_{m}^{2}& = \left( \begin{array}{ccc} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 \\ (1-q)r_{k-1}^{(T_{f})}\frac{1}{W_{m}} &{} \cdots &{} (1-q)r_{k-1}^{(T_{f})}\frac{1}{W_{m}} \end{array} \right) _{(M-1) \times W_{m}} \end{aligned}$$
$$\begin{aligned} {\varvec{H}}_{m}^{3}& = \left( \begin{array}{cccc} (1-p)(1-q)a_{k-1}^{m*} &{} 0 &{} \cdots &{} 0 \\ 0 &{} \cdots &{} \cdots &{} 0 \\ \vdots &{} &{} &{} \vdots \\ 0 &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{W_{m} \times (M-1)}\\ {\varvec{H}}_{m}^{4}& = \left( \begin{array}{ccccc} 0 &{} (1-q)r_{k-1}^{(T_{f})} &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ \vdots &{} &{} \ddots &{} \ddots &{} 0 \\ \vdots &{} &{} &{} \ddots &{} (1-q)r_{k-1}^{(T_{f})} \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{(M-1) \times (M-1).} \end{aligned}$$

Appendix 2: The component matrices of the matrix \({\varvec{B(z)}}\)

.

$$\begin{aligned} {\varvec{E}}_0(z)& = \left( \begin{array}{cc} {\varvec{E}}_{0}^{1}(z) &{} {\varvec{E}}_{0}^{3}(z) \\ {\varvec{E}}_{0}^{2}(z) &{} {\varvec{E}}_{0}^{4}(z) \end{array} \right) \\ {\varvec{E}}_{0}^{1}(z)& = \left( \begin{array}{ccccc} (1-p)qa^{0*}(z)\frac{1}{W_{0}} &{} (1-p)qa^{0*}(z)\frac{1}{W_{0}} &{} \cdots \\ r^{(\sigma )}(z) \overline{\beta _{1}^{0}} + r^{(\sigma + T)}(z)\beta _{1}^{0} &{} 0 &{} \cdots \\ 0 &{} r^{(\sigma )}(z) \overline{\beta _{2}^{0}} + r^{(\sigma + T)}(z)\beta _{2}^{0} &{} \ddots \\ \vdots &{} \vdots &{} \ddots \\ 0 &{} 0 &{} \cdots \end{array} \right. \\&\left. \begin{array}{cccccc} \cdots &{} (1-p)qa^{0*}(z)\frac{1}{W_{0}} \\ 0 &{} 0 \\ 0 &{} 0 \\ \vdots &{} \vdots \\ r^{(\sigma )}(z) \overline{\beta _{W_{0}-1}^{0}} + r^{(\sigma + T)}(z)\beta _{W_{0}-1}^{0} &{} 0 \\ \end{array} \right) _{W_{0} \times W_{0}}\\ {\varvec{E}}_{0}^{2}(z)& = \left( \begin{array}{ccc} qr^{(T_{f})}(z)\frac{1}{W_{0}} &{} \cdots &{} qr^{(T_{f})}(z)\frac{1}{W_{0}} \\ \vdots &{} \ddots &{} \vdots \\ qr^{(T_{f})}(z)\frac{1}{W_{0}} &{} \cdots &{} qr^{(T_{f})}(z)\frac{1}{W_{0}} \end{array} \right) _{(M-1) \times W_{0}}\\ {\varvec{E}}_{0}^{3}(z)& = \left( \begin{array}{cccc} (1-p)(1-q)a^{0*}(z) &{} 0 &{} \cdots &{} 0 \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right) _{W_{0} \times (M-1)}\\ {\varvec{E}}_{0}^{4}(z)& = \left( \begin{array}{ccccc} 0 &{} (1-q)r^{(T_{f})}(z) &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ \vdots &{} &{} \ddots &{} \ddots &{} 0 \\ \vdots &{} &{} &{} \ddots &{} (1-q)r^{(T_{f})}(z) \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{(M-1) \times (M-1)}\\ {\varvec{E}}_{i}(z)& = \left( \begin{array}{cc} {\varvec{E}}_{i}^{1}(z) &{} \mathbf{0} \\ {\varvec{E}}_{i}^{2}(z) &{} \mathbf{0} \end{array} \right) (1\le i \le m) \\ {\varvec{E}}_{i}^{1}(z)& = \left( \begin{array}{ccc} (1-p)qa^{i*}(z)\frac{1}{W_{0}} &{} \cdots &{} (1-p)qa^{i*}(z)\frac{1}{W_{0}} \\ 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 \end{array} \right) _{W_{i} \times W_{0}} \\ {\varvec{E}}_{i}^{2}(z)& = \left( \begin{array}{ccc} qr^{(T_{f})}(z)\frac{1}{W_{0}} &{} \cdots &{} qr^{(T_{f})}(z)\frac{1}{W_{0}} \\ \vdots &{} \ddots &{} \vdots \\ qr^{(T_{f})}(z)\frac{1}{W_{0}} &{} \cdots &{} qr^{(T_{f})}(z)\frac{1}{W_{0}} \end{array} \right) _{(M-1) \times W_{0}} \\ {\varvec{F}}_{i}(z)& = z\left( \begin{array}{cc} {\varvec{E}}_{i}^{1}(z) &{} \mathbf{0} \\ {\varvec{E}}_{i}^{2}(z) &{} \mathbf{0} \end{array} \right) (1\le i \le m) \end{aligned}$$
$$\begin{aligned} {\varvec{F}}_{i}^{1}(z)& = \left( \begin{array}{ccc} pa^{(i-1)c}(z)\frac{1}{W_{i}} &{} \cdots &{} pa^{(i-1)c}(z)\frac{1}{W_{i}} \\ 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 \end{array} \right) _{W_{i-1} \times W_{i}} \\ {\varvec{F}}_{i}^{2}(z)& = \left( \begin{array}{ccc} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 \\ (1-q)r^{(T_{f})}(z)\frac{1}{W_{i}} &{} \cdots &{} (1-q)r^{(T_{f})}(z)\frac{1}{W_{i}} \end{array} \right) _{(M-1) \times W_{i}} \\ {\varvec{H}}_{i}(z)& = z\left( \begin{array}{cc} {\varvec{H}}_{i}^{1}(z) &{} {\varvec{H}}_{i}^{3}(z) \\ \mathbf{0} &{} {\varvec{H}}_{i}^{4}(z) \end{array} \right) (1\le i \le m-1) \\ {\varvec{H}}_{i}^{1}(z)& = \left( \begin{array}{ccccc} 0 &{} \cdots &{} \cdots &{} \cdots &{} 0 \\ r^{(\sigma )}(z)\overline{\beta _{1}^{i}} + r^{(\sigma + T)}(z)\beta _{1}^{i} &{} \ddots &{} &{} &{} \vdots \\ 0 &{} r^{(\sigma )}(z)\overline{\beta _{2}^{i}} + r^{(\sigma + T)}(z)\beta _{2}^{i} &{} \ddots &{} &{} \vdots \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 &{} r^{(\sigma )}(z)\overline{\beta _{W_{i}-1}^{i}} + r^{(\sigma + T)}(z)\beta _{W_{i}-1}^{i} &{} 0 \end{array} \right) _{W_{i} \times W_{i}} \\ {\varvec{H}}_{i}^{3}(z)& = \left( \begin{array}{cccc} (1-p)(1-q)a^{i*}(z) &{} 0 &{} \cdots &{} 0 \\ 0 &{} \cdots &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{W_{i} \times (M-1)} \\ {\varvec{H}}_{i}^{4}(z)& = \left( \begin{array}{ccccc} 0 &{} (1-q)r^{(T_{f})}(z) &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ \vdots &{} &{} \ddots &{} \ddots &{} 0 \\ \vdots &{} &{} &{} \ddots &{} (1-q)r^{(T_{f})}(z) \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{(M-1) \times (M-1)} \\ {\varvec{H}}_{m}(z)& = z\left( \begin{array}{cc} {\varvec{H}}_{m}^{1}(z) &{} {\varvec{H}}_{m}^{3}(z) \\ {\varvec{H}}_{m}^{2}(z) &{} {\varvec{H}}_{m}^{4}(z) \end{array} \right) \end{aligned}$$
$$\begin{aligned} {\varvec{H}}_{m}^{1}(z)& = \left( \begin{array}{ccccc} pa^{mc}(z)\frac{1}{W_{m}} &{} pa^{mc}(z)\frac{1}{W_{m}} &{} \cdots \\ r^{(\sigma )}(z)\overline{\beta _{1}^{m}} + r^{(\sigma + T)}(z)\beta _{1}^{m} &{} 0 &{} \\ 0 &{} r^{(\sigma )}(z)\overline{\beta _{2}^{m}} + r^{(\sigma + T)}(z)\beta _{2}^{m} &{} \ddots \\ \vdots &{} \ddots &{} \ddots \\ 0 &{} \cdots &{} 0 \end{array} \right. \\&\left. \begin{array}{cccc} \cdots &{} pa^{mc}(z)\frac{1}{W_{m}} \\ \vdots &{} \vdots \\ \ddots &{} \vdots \\ \ddots &{} \vdots \\ r^{(\sigma )}(z)\overline{\beta _{W_{m}-1}^{m}} + r^{(\sigma + T)}(z)\beta _{W_{m}-1}^{m} &{} 0 \end{array} \right) _{W_{m} \times W_{m}} \\ {\varvec{H}}_{m}^{2}(z)& = \left( \begin{array}{ccc} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0 \\ (1-q)r^{(T_{f})}(z)\frac{1}{W_{m}} &{} \cdots &{} (1-q)r^{(T_{f})}(z)\frac{1}{W_{m}} \end{array} \right) _{(M-1) \times W_{m}} \\ {\varvec{H}}_{m}^{3}(z)& = \left( \begin{array}{cccc} (1-p)(1-q)a^{m*}(z) &{} 0 &{} \cdots &{} 0 \\ 0 &{} \cdots &{} \cdots &{} 0 \\ \vdots &{} &{} &{} \vdots \\ 0 &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{W_{m} \times (M-1)}\\ {\varvec{H}}_{m}^{4}(z)& = \left( \begin{array}{ccccc} 0 &{} (1-q)r^{(T_{f})}(z) &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ \vdots &{} &{} \ddots &{} \ddots &{} 0 \\ \vdots &{} &{} &{} \ddots &{} (1-q)r^{(T_{f})}(z) \\ 0 &{} \cdots &{} \cdots &{} \cdots &{} 0 \end{array} \right) _{(M-1) \times (M-1)} \end{aligned}$$

where

$$\begin{aligned}&\begin{array}{llll} a^{i*}(z) &{}\equiv \displaystyle \sum ^{\infty }_{k=0}z^{k}a^{i*}_{k}= \displaystyle \sum ^{N-1}_{n^{*}=0}\alpha ^{i}_{n^{*}} e^{-\lambda ((n^{*}+1)\sigma +T)(1-z)} \\ a^{ic}(z) &{}\equiv \displaystyle \sum ^{\infty }_{k=0}z^{k}a^{ic}_{k} = \displaystyle \sum ^{N-1}_{n^{*}=0}\alpha ^{i}_{n^{*}} e^{-\lambda ((n^{*}+1)\sigma + T + (M-1)T_{f})(1-z)} \end{array}\\&\begin{array}{llll} r^{(T_{f})}(z) \equiv \displaystyle \sum ^{\infty }_{k=0}z^{k}r^{(T_{f})}_{k}= e^{-\lambda T_{f}(1-z)}, r^{(\sigma )}(z) \equiv \displaystyle \sum ^{\infty }_{k=0}z^{k}r^{(\sigma )}_{k} = e^{-\lambda \sigma (1-z)} \\ r^{(\sigma +T)}(z) \equiv \displaystyle \sum ^{\infty }_{k=0}z^{k}r^{(\sigma +T)}_{k}= e^{-\lambda (\sigma +T)(1-z)}. \end{array} \end{aligned}$$

Appendix 3: The algorithm computing the matrices \({\varvec{V}}_k\)

. Rewrite the formulae (13) as follows:

$$\begin{aligned} \left\{ \begin{array}{llll} {\varvec{C}}_2{\varvec{V}}_0=0, &{} \\ \displaystyle {\varvec{C}}_2{\varvec{V}}_k= \frac{k!}{(k-1)!}({\varvec{I}}_W-{\varvec{B}}_1){\varvec{V}}_{k-1}-\sum _{l=2}^{k}\frac{k!}{(k-l)!}{\varvec{B}}_l{\varvec{V}}_{k-l}, &{} k=1,\cdots , W-2. \end{array} \right. \end{aligned}$$

Let

$$\begin{aligned} {\varvec{V}}_{k}=\left[ \begin{array}{cccccccccccccccc} V_{0,0}^{(k)} &{} V_{0,1}^{(k)} &{} \cdots &{} V_{0,m}^{(k)} \\ V_{1,0}^{(k)} &{} V_{1,1}^{(k)} &{} \cdots &{} V_{1,m}^{(k)} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ V_{m,0}^{(k)} &{} V_{m,1}^{(k)} &{} \cdots &{} V_{m,m}^{(k)} \\ \end{array} \right] \end{aligned}$$

where \(V_{i,l}^{(k)},\ 0\le l \le m\) are \(W_i\times W_0\) matrix. We have that

$$\begin{aligned} {\varvec{C}}_2{\varvec{V}}_k=\left[ \begin{array}{cccccccccccccccc} C_{20}V_{0,0}^{(k)} &{} C_{20}V_{0,1}^{(k)} &{} \cdots &{} C_{20}V_{0,m}^{(k)} \\ C_{21}V_{0,0}^{(k)} &{} C_{21}V_{0,1}^{(k)} &{} \cdots &{} C_{21}V_{0,m}^{(k)} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ C_{2m}V_{0,0}^{(k)} &{} V_{0,1}^{(k)} &{} \cdots &{} C_{2m}V_{0,m}^{(k)} \\ \end{array} \right] . \end{aligned}$$

The product matrix does not include the submatrices \(V_{il}^{(k)},\ 1\le i \le m; 0\le l \le m\). This means that they can be freely determined and only the submatrices \(V_{0,l}^{(k)}, 0\le l \le m\) of the first row of \(V_k\) need to be found. From (14), we can construct the following recursion algorithm for \(V_{0,l}^{(k)}, 0\le l \le m\).

Step 1. Determine \(V_{0,l}^{(0)}\) from the equations:

$$\begin{aligned} C_{2i}V_{0,l}^{(0)}=0, 0\le i,\ l\le m. \end{aligned}$$

Step 2. Determine \(V_{0,l}^{(1)}\) from the equations:

$$\begin{aligned} \left\{ \begin{array}{llll} C_{20}V_{0,l}^{(1)}=(I_{W_0}-D_{0}^{(1)})V_{0,l}^{(0)}-E_1^{(1)}V_{1,l}^{(0)} &{} 0\le l \le m \\ C_{2i}V_{0,l}^{(1)}=-D_i^{(1)}V_{0,l}^{(0)}+(I_{W_i}-F_{i}^{(1)})V_{i,l}^{(0)}-E_{i+1}^{(1)}V_{i+1,l}^{(0)} &{} \ 0\le l \le m; 1\le i \le m-1 \\ C_{2m}V_{0,l}^{(1)}=-D_m^{(1)}V_{0,l}^{(0)}+(I_{W_m}-F_m^{(1)})V_{m,l}^{(0)} &{} 0 \le l \le m. \end{array} \right. \end{aligned}$$

Step 3. Determine \(V_{0,l}^{(k)}\) for \(k=2,\cdots , W-2\) from the equations:

$$\begin{aligned} \left\{ \begin{array}{llllll} \displaystyle C_{20}V_{0,l}^{(k)}=\frac{k!}{(k-1)!}[(I_{W_0}-D_{0}^{(1)})V_{0,l}^{(k-1)}-E_1^{(1)}V_{1,l}^{(k-1)}] &{} \\ -\displaystyle \sum _{a=2}^{k}\frac{k!}{(k-a)!}[D_0^{(a)}V_{0,l}^{(k-a)}+E_1^{(a)}V_{1,l}^{(k-a)}],&{} 0\le l \le m \\ \displaystyle C_{2i}V_{0,l}^{(k)}=\frac{k!}{(k-1)!}[-D_{i}^{(1)}V_{0,l}^{(k-1)}+(I_{W_i}-F_i^{(1)})V_{i,l}^{(k-1)}-E_{i+1}^{(1)}V_{i+1,l}^{(k-1)}] &{} \\ -\displaystyle \sum _{a=2}^{k}\frac{k!}{(k-a)!}[D_i^{(a)}V_{0,l}^{(k-a)}+F_{i}^{(a)}V_{i,l}^{(k-a)}+E_{i+1}^{(a)}V_{i+1,l}^{(k-a)}], &{} 0\le l \le m;\\ &{} 1\le i \le m \\ \displaystyle C_{2m}V_{0,l}^{(k)}=\frac{k!}{(k-1)!}[-D_{m}^{(1)}V_{0,l}^{(k-1)}+(I_{W_m}-F_m^{(1)})V_{m,l}^{(k-1)}] &{} \\ -\displaystyle \sum _{a=2}^{k}\frac{k!}{(k-a)!}[D_m^{(a)}V_{0,l}^{(k-a)}+F_m^{(a)}V_{m,l}^{(k-a)}], &{} 0\le l \le m. \end{array} \right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W. Spectral Analysis of the Queueing Model for IEEE 802.16 Wireless Networks. Wireless Pers Commun 121, 2073–2110 (2021). https://doi.org/10.1007/s11277-021-08810-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08810-8

Keywords

Navigation