Skip to main content

Advertisement

Log in

LIMAP: A Lightweight Multilayer Authentication Protocol for WBAN

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Body Area Networks (WBANs) are emerging technologies used in the medicinal market for various applications. They connect sensors throughout the human body and hence possibly used to monitor health. However, one of the significant disadvantages of WBANs is notable security and protection problems that need rectification to protect critical data. In previous researches, WBANs have single-layer authentication protocols that are not compatible with their device design qualities, and malicious attackers can take advantage of this. For this purpose, this work has introduced a lightweight and multilayer authentication protocol for WBANs, which uses one-to-one group authentication and group key development algorithm with low software costs to communicate between personal digital assistants and sensor hubs. This model presents the Elliptical Curve Algorithm using Foci calculation, which provides low computing cost, high security, etc., that further integrates with the hash function. Finally, the security and implementation analysis reveal the stability and effectiveness of our convention. All key generations and validations used in our protocol implemented are for better performance and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

None.

Code availability

None.

References

  1. Shao, Z. (2005). Short signature scheme based on discrete logarithms. In International conference on web-age information management (pp. 645–650). Berlin: Springer.

  2. Yang, C., Ma, W., & Wang, X. (2007). Novel remote user authentication scheme using bilinear pairings. In International conference on autonomic and trusted computing (pp. 306–312). Berlin: Springer.

  3. Shim, K. A. (2009). Breaking the short certificateless signature scheme. Information Sciences, 179(3), 303–306.

    Article  MathSciNet  Google Scholar 

  4. Wu, T. Y., & Tseng, Y. M. (2010). An efficient user authentication and key exchange protocol for mobile client–server environment. Computer Networks, 54(9), 1520–1530.

    Article  Google Scholar 

  5. He, D. (2012). An efficient remote user authentication and key agreement protocol for mobile client–server environment from pairings. Ad Hoc Networks, 10(6), 1009–1016.

    Article  Google Scholar 

  6. Chen, Y. C., Tso, R., Susilo, W., Huang, X., & Horng, G. (2013). Certificateless signatures: structural extensions of security models and new provably secure schemes. IACR Cryptology ePrint Archive, 2013, 193.

    Google Scholar 

  7. Książak, P., Farrelly, W., & Curran, K. (2014). A lightweight authentication protocol for secure communications between resource-limited devices and wireless sensor networks. International Journal of Information Security and Privacy (IJISP), 8(4), 62–102.

    Article  Google Scholar 

  8. He, D., Kumar, N., Chen, J., Lee, C. C., Chilamkurti, N., & Yeo, S. S. (2015). Robust anonymous authentication protocol for health-care applications using wireless medical sensor networks. Multimedia Systems, 21(1), 49–60.

    Article  Google Scholar 

  9. Tu, H., Kumar, N., Chilamkurti, N., & Rho, S. (2015). An improved authentication protocol for session initiation protocol using smart card. Peer-to-Peer Networking and Applications, 8(5), 903–910.

    Article  Google Scholar 

  10. Yuan, Y. (2015). On the security of a proxy signature scheme in the standard model. International Journal of Communication Systems, 28(4), 675–681.

    Article  Google Scholar 

  11. Jiang, Q., Khan, M. K., Lu, X., Ma, J., & He, D. (2016). A privacy preserving three-factor authentication protocol for e-Health clouds. The Journal of Supercomputing, 72(10), 3826–3849.

    Article  Google Scholar 

  12. Kaur, K., Kumar, N., Singh, M., & Obaidat, M. S. (2016). Lightweight authentication protocol for RFID-enabled systems based on ECC. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.

  13. Li, X., Ibrahim, M. H., Kumari, S., Sangaiah, A. K., Gupta, V., & Choo, K. K. R. (2017). Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks. Computer Networks, 129, 429–443.

    Article  Google Scholar 

  14. Tewari, A., & Gupta, B. B. (2017). A lightweight mutual authentication protocol based on elliptic curve cryptography for IoT devices. International Journal of Advanced Intelligence Paradigms, 9(2–3), 111–121.

    Article  Google Scholar 

  15. Li, X., Peng, J., Niu, J., Wu, F., Liao, J., & Choo, K. K. R. (2017). A robust and energy efficient authentication protocol for industrial internet of things. IEEE Internet of Things Journal, 5(3), 1606–1615.

    Article  Google Scholar 

  16. Dorri, A., Kanhere, S. S., & Jurdak, R. (2017). Towards an optimized blockchain for IoT. In 2017 IEEE/ACM second international conference on internet-of-things design and implementation (IoTDI) (pp. 173–178). IEEE.

  17. Amin, R., Kumar, N., Biswas, G. P., Iqbal, R., & Chang, V. (2018). A light weight authentication protocol for IoT-enabled devices in distributed Cloud Computing environment. Future Generation Computer Systems, 78, 1005–1019.

    Article  Google Scholar 

  18. Shen, J., Gui, Z., Ji, S., Shen, J., Tan, H., & Tang, Y. (2018). Cloud-aided lightweight certificateless authentication protocol with anonymity for wireless body area networks. Journal of Network and Computer Applications, 106, 117–123.

    Article  Google Scholar 

  19. Huang, S. C., Tsai, C. W., & Hwang, T. (2018). Comment on “Cryptanalysis of a novel ultralightweight mutual authentication protocol for IoT devices using RFID tags”. In Proceedings of the 2018 international conference on data science and information technology (pp. 23–27).

  20. Wang, K. H., Chen, C. M., Fang, W., & Wu, T. Y. (2018). On the security of a new ultra-lightweight authentication protocol in IoT environment for RFID tags. The Journal of Supercomputing, 74(1), 65–70.

    Article  Google Scholar 

  21. Novo, O. (2018). Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet of Things Journal, 5(2), 1184–1195.

    Article  Google Scholar 

  22. Thangapandiyan, M., Anand, P. R., & Sankaran, K. S. (2018). Enhanced cloud security implementation using modified ECC algorithm. In 2018 international conference on communication and signal processing (ICCSP) (pp. 1019–1022). IEEE.

  23. Polai, M., Mohanty, S., & Sahoo, S. S. (2019). A lightweight mutual authentication protocol for wireless body area network. In 2019 6th international conference on signal processing and integrated networks (SPIN) (pp. 760–765). IEEE.

  24. Vijayakumar, P., Obaidat, M. S., Azees, M., Islam, S. H., & Kumar, N. (2019). Efficient and secure anonymous authentication with location privacy for IoT-based WBANs. IEEE Transactions on Industrial Informatics, 16(4), 2603–2611.

    Article  Google Scholar 

  25. Tan, H., & Chung, I. (2019). Secure authentication and group key distribution scheme for WBANs based on smartphone ECG sensor. IEEE Access, 7, 151459–151474.

    Article  Google Scholar 

  26. Odelu, V., Saha, S., Prasath, R., Sadineni, L., Conti, M., & Jo, M. (2019). Efficient privacy preserving device authentication in WBANs for industrial e-health applications. Computers & Security, 83, 300–312.

    Article  Google Scholar 

  27. Kompara, M., Islam, S. H., & Hölbl, M. (2019). A robust and efficient mutual authentication and key agreement scheme with untraceability for WBANs. Computer networks, 148, 196–213.

    Article  Google Scholar 

  28. Dwivedi, A. D., Srivastava, G., Dhar, S., & Singh, R. (2019). A decentralized privacy-preserving healthcare blockchain for IoT. Sensors, 19(2), 326.

    Article  Google Scholar 

  29. Seok, B., Park, J., & Park, J. H. (2019). A lightweight hash-based blockchain architecture for industrial IoT. Applied Sciences, 9(18), 3740.

    Article  Google Scholar 

  30. Shah, A., & Engineer, M. (2019). A survey of lightweight cryptographic algorithms for IoT-based applications. In Smart innovations in communication and computational sciences (pp. 283–293). Singapore: Springer.

  31. Shantha, A., Renita, J., & Edna, E. N. (2019). Analysis and implementation of ECC algorithm in lightweight device. In 2019 International conference on communication and signal processing (ICCSP) (pp. 0305–0309). IEEE.

  32. Mwitende, G., Ye, Y., Ali, I., & Li, F. (2020). Certificateless authenticated key agreement for blockchain-based WBANs. Journal of Systems Architecture, 110, 101777.

    Article  Google Scholar 

  33. Jegadeesan, S., Azees, M., Babu, N. R., Subramaniam, U., & Almakhles, J. D. (2020). EPAW: Efficient privacy preserving anonymous mutual authentication scheme for wireless body area networks (WBANs). IEEE Access, 8, 48576–48586.

    Article  Google Scholar 

  34. Xu, J., Meng, X., Liang, W., Zhou, H., & Li, K. C. (2020). A secure mutual authentication scheme of blockchain-based in WBANs. China Communications, 17(9), 34–49.

    Article  Google Scholar 

  35. Shuai, M., Liu, B., Yu, N., Xiong, L., & Wang, C. (2020). Efficient and privacy-preserving authentication scheme for wireless body area networks. Journal of Information Security and Applications, 52, 102499.

    Article  Google Scholar 

  36. Fotouhi, M., Bayat, M., Das, A. K., Far, H. A. N., Pournaghi, S. M., & Doostari, M. A. (2020). A lightweight and secure two-factor authentication scheme for wireless body area networks in health-care IoT. Computer Networks, 177, 107333.

    Article  Google Scholar 

  37. Kasyoka, P., Kimwele, M., & Mbandu Angolo, S. (2020). Certificateless pairing-free authentication scheme for wireless body area network in healthcare management system. Journal of Medical Engineering and Technology, 44(1), 12–19.

    Article  Google Scholar 

  38. Dhanda, S. S., Singh, B., & Jindal, P. (2020). Lightweight cryptography: A solution to secure IoT. Wireless Personal Communications, 112(3), 1947–1980.

    Article  Google Scholar 

  39. Lee, J., Yu, S., Kim, M., Park, Y., & Das, A. K. (2020). On the design of secure and efficient three-factor authentication protocol using honey list for wireless sensor networks. IEEE Access, 8, 107046–107062.

    Article  Google Scholar 

  40. Yuvaraj, N., Raja, R. A., & Kousik, N. V. (2021). Privacy preservation between privacy and utility using ECC-based PSO algorithm. In Intelligent computing and applications (pp. 567–573). Singapore: Springer.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

First Author Implemented: PD, AV, DC, SAK, and et al. as a guide and corresponding author for submission.

Corresponding author

Correspondence to S. Ananda Kumar.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Vashisth, A., Chadha, D. et al. LIMAP: A Lightweight Multilayer Authentication Protocol for WBAN. Wireless Pers Commun 121, 2857–2884 (2021). https://doi.org/10.1007/s11277-021-08853-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08853-x

Keywords

Navigation