Skip to main content
Log in

Distributed TDMA Frame with Transmission Slot Estimation for Fully Connected Wireless Multihop Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

RTS/ CTS protocol serves multihop wireless networks poorly due to its single-hop design. TDMA protocol surpasses RTS/ CTS but unable to solve the dynamic needs of wireless networks. Though dynamic TDMA fulfills the performance gap of TDMA but still allocation of bandwidth among the nodes is a challenging task. The proposed method- DFSE, describes analytically and experimentally an efficient way to utilize the available bandwidth efficiently to achieve higher throughput by minimizing the waiting time of a node in a ready queue. The proposed model serves nodes with the available bandwidth in a shared fashion by their relative priority. Here the DFSE model ensures the prioritized distribution of the slots should not lead to starvation. But before distribution, the number of slots in a frame must be in an optimum quantity otherwise it may go for underuse or overuse. Therefore, the proposed model estimates the number of slots in a frame such that its optimum use can be assured. This estimation is dependent upon the previous behavior of the network. The DFSE is able to improve– network throughput, average delay time, bandwidth utilization, frame length, slot allocation, and queue length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wei, Z., Hu, B., & Lin, Z. (2019). Multichannel MAC protocol with dynamic backoff contention for distributed cognitive radio networks. J Wireless Com Network, 2019, 202. https://doi.org/10.1186/s13638-019-1513-2

    Article  Google Scholar 

  2. Wang, J., Shen, J., Shi, W., Qiao, G., Wu, S., & Wang, X. (2019). A novel energy-efficient contention-based MAC protocol used for OA-UWSN. Sensors, 19, 183. https://doi.org/10.3390/s19010183

    Article  Google Scholar 

  3. P. Murkya, J. Singh and A. Bhatia. (2019). A Topology Independent TDMA-based MAC protocol for Vehicular Networks," 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, pp. 407–409. https://doi.org/10.1109/COMSNETS.2019.8711103

  4. Y Xia, S Chen, P Pei, Y Xu, J Liang, T Zhang. (2019). COPESM-MAC: A Contention-based Medium Access Protocol using Parallel Reservation and Sleep Mode for Underwater Acoustic Sensor Networks, OCEANS 2019 - Marseille, Marseille, France, pp. 1-5. Doi: https://doi.org/10.1109/OCEANSE.2019.8867199

  5. Alfouzan, F. A., Shahrabi, A., Ghoreyshi, S. M., & Boutaleb, T. (2019). An energy-conserving collision-free MAC protocol for underwater sensor networks. IEEE Access, 7, 27155–27171. https://doi.org/10.1109/ACCESS.2019.2901646

    Article  Google Scholar 

  6. Su, Y., Dong, L., & Yang, Q. (2020). DCN-MAC: A dynamic channel negotiation mac mechanism for underwater acoustic sensor networks. Sensors (Basel, Switzerland), 20(2), 406. https://doi.org/10.3390/s20020406

    Article  Google Scholar 

  7. Nguyen, V. D., Pham, C., Oo, T. Z., Tran, N. H., Huh, E.-Nm., & Hong, C. S. (2020). MAC protocols with dynamic interval schemes for VANETs. Vehicular Communications, 15, 40–62. https://doi.org/10.1016/j.vehcom.2018.11.003

    Article  Google Scholar 

  8. Quadri, D., Martin, S., & Agha, KAl. (2019). A simple and efficient way to save energy in multihop wireless networks with flow aggregation. Journal of Computer Networks and Communications. https://doi.org/10.1155/2019/7059401

    Article  Google Scholar 

  9. A K Shrivastava, Abbhinav Vidwans, Amit Saxena, “Comparison of AOMDV Routing Protocol under IEEE802.11 and TDMA Mac Layer Protocol”, in the proceedings of the Computational Intelligence and Communication Networks (CICN), 2013, 5th International Conference on 27–29 September 2013, pp. 117 – 122, DOI:https://doi.org/10.1109/CICN.2013.35

  10. Liu, Y., Zhou, H., & Huang, J. (2019). OCA-MAC: A cooperative TDMA-based MAC Protocol for vehicular Ad Hoc networks. Sensors (Basel), 19(12), 2691. https://doi.org/10.3390/s19122691

    Article  Google Scholar 

  11. Javaid, N., Israr, I., Khan, M.A., Javaid, A., Bouk, S.H., & Khan, Z.A. (2013). Analyzing Medium Access Techniques in Wireless Body Area Networks. 2013, ArXiv, abs/1304.1047.

  12. M. Zulfiker Ali and Jelena Mišić and Vojislav B. Mišić, Performance analysis of IEEE 802.11ax heterogeneous network in the presence of hidden terminals, arXiv preprint arXiv: 1908.01834, 2019 - arxiv.org

  13. Xu, S., & Saadawi, T. (2001). Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks? IEEE Communications Magazine, 39(6), 130–137. https://doi.org/10.1109/35.925681

    Article  Google Scholar 

  14. Kumar, B., Garg, R., & Kumar, S. (2014). Performance improvement of ad-hoc networks using multi-interface, multi-channel MAC and routing protocols. International Journal For Research In Applied Science And Engineering Technology, 2(4), 227–232.

    Google Scholar 

  15. Ruchi Garg, Himanshu Sharma, Sumit Kumar. (2010). Effectiveness of AODV Protocol under Hidden Node Environment, Book- Communication and Networking, Publisher Springer Berlin Heidelberg, pp. 432–440, Doi: https://doi.org/10.1007/978-3-642-17604-3_50

  16. Kumar, S., Kumar, S., & Batra, N. (2021). Optimized distance range free localization algorithm for WSN. Wireless Personal Communications, 117, 1879–1907. https://doi.org/10.1007/s11277-020-07950-7

    Article  Google Scholar 

  17. Kumar, S., & Lobiyal, D. K. (2013). An advanced DV-hop localization algorithm for wireless sensor networks. Wireless Personal Communications, 71(2), 1365–1385. https://doi.org/10.1007/s11277-012-0880-3

    Article  Google Scholar 

  18. Aguilar Igartua, M., Carrascal Frías, V., de la Cruzllopis, Luis J., & Sanvicente Gargallo, E. (2012). Dynamic framework with adaptive contention window and multipath routing for video-streaming services over mobile Ad Hoc networks. Telecommunication Systems, 49(4), 379–390. https://doi.org/10.1007/s11235-010-9388-x

    Article  Google Scholar 

  19. Igartua, M. A., & Fras, V. C. (2010). Self-configured multipath routing using path lifetime for video-streaming services over Ad Hoc networks. Computer Communications archive, 33(15), 1879–1891. https://doi.org/10.1016/j.comcom.2010.06.019

    Article  Google Scholar 

  20. Chowdhury, K. R., & Akyildiz, I. F. (2011). CRP: A routing protocol for cognitive radio Ad Hoc networks. IEEE Journal on Selected Areas in Communications, 29(4), 794–804. https://doi.org/10.1109/JSAC.2011.110411

    Article  Google Scholar 

  21. Qi Yang, Biyu Tang, “A Tdma Based Media Access Control Protocol For Wireless Ad Hoc Networks”, SPIE 8784, in the proceedings of the Communications Fifth International Conference on Machine Vision (ICMV 2012): Algorithms, Pattern Recognition, and Basic Technologies on 13 March 2013, SPIE Proceedings Volume. 8784, DOI:https://doi.org/10.1117/12.2021233

  22. Abd El-Gawad, M. A., Elsharief, M., & Kim, H. (2019). A cooperative V2X MAC protocol for vehicular networks. J Wireless Com Network, 2019, 65. https://doi.org/10.1186/s13638-019-1382-8

    Article  Google Scholar 

  23. Pantelis A. Frangoudis, Adlen Ksentiniy, Yassine Hadjadj-Aouly, and Gilles Boime, “PTPv2-Based Network Load Estimation”, Precision Clock Synchronization for Measurement Control and Communication (ISPCS), 2013 International IEEE Symposium on 22–27 Sept. 2013, pp. 101 – 106, DOI:https://doi.org/10.1109/ISPCS.2013.6644771

  24. Jiang, Xiaoxiao, & Du, David HC. (2016). PTMAC: A prediction-based TDMA MAC protocolfor reducing packet collisions in VANET. IEEE Transactions on Vehicular Technology, 65(99), 1–6. https://doi.org/10.1109/TVT.2016.2519442

    Article  Google Scholar 

  25. Mahsa Torkamanian Afshar, MT Manzuri, Nasim Latifi (2011) A Model for Traffic Prediction in Wireless Ad-Hoc Networks, INCT 2011, CCIS 241. Springer-Verlag Berlin Heidelberg, 328–335, Doi: https://doi.org/10.1007/978-3-642-27337-7_31.

  26. Tomas Holmberg, Jimmi Grönkvist, Jan Nilsson, Mattias Sköld,” Traffic Estimation in Mobile TDMA-based Ad Hoc Networks”, The Sixth Annual Mediterranean Ad Hoc Networking Workshop, Corfu, Greece, June 12–15, 2007, pp.85–91, DOI:10.1.1.533.3522

  27. Xu Zhen, Yang Wenzhong. (2013). Bandwidth-Aware Routing For TDMA-Based Mobile Ad Hoc Networks, in the proceedings of the Information Networking (ICOIN), 2013 International Conference on 28–30, pp. 637 – 642, DOI:https://doi.org/10.1109/ICOIN.2013.6496701

  28. Kwang-Ho Jung, Moo-Geun Song, Dong-Ik Lee, Sung Ho Jin, “Priority-Based Scheduling Of Dynamic Segment In Flexray Network”, in Proceedings of the Control, Automation and Systems, 2008. ICCAS 2008, International Conference on 14–17 Oct. 2008, pp. 1036 – 1041, DOI:https://doi.org/10.1109/ICCAS.2008.4694307

  29. Arvind Viswanathan, Dr. Garimella Rama Murthy, “Heterogeneous Dynamic Priority Scheduling in time critical applications: Mobile Wireless Sensor Networks”, arXiv: 1302.5903, 2013.

  30. Ossama Younis, David Shallcross, Latha Kant, Kenneth Young, Charles Graff, Mitesh Patel,” Tdma Scheduling And Channel Assignment For Cognitive Tactical Networks”, in the proceedings of the Military Communications Conference, 2012 - MILCOM 2012 on October 29, 2012- November 1, 2012, pp. 1 – 6, DOI:https://doi.org/10.1109/MILCOM.2012.6415665

  31. Ouni, R. (2012). Dynamic slot assignment protocol for QoS support on TDMA-based mobile networks. Computer Standards & Interfaces Archive, 34(1), 146–155. https://doi.org/10.1016/j.csi.2011.06.003

    Article  Google Scholar 

  32. Ahmed K. Sadek, K. J. Ray Liu, Anthony Ephremides. (2006). Collaborative Multiple-Access Protocols for Wireless Networks”, in the proceedings of the Communications, 2006. ICC '06. IEEE International Conference on 11–15, pp. 4495–4500, DOI:https://doi.org/10.1109/ICC.2006.255347

  33. Tomas Holmberg, Jimmi Gronkvist, Mattias Skold, “Traffic Estimation in Mobile TDMA-based Ad Hoc Networks”, in the proceedings of The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece on June 12–15, 2007, pp.86–91.

  34. Kas, M., & Korpeoglu, I. (2010). Utilization-based dynamic scheduling algorithm for wireless mesh networks. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1155/2010/312828

    Article  Google Scholar 

  35. Patel, J. K., & Read, C. B. (1982). Handbook of the Normal Distribution (2nd ed.). Marcel Dekker.

    MATH  Google Scholar 

  36. Bhupendra Suman, LC Mangal. (2015). A Dynamic Tdma Slot Scheduling(DTSS) Scheme For Efficient Channel Allocation In Tactical Ad Hoc Networks”, in Proceedings of the Computing, Communication & Automation (ICCCA), International Conference on 15–16 May 2015, pp. 502 – 507, DOI:https://doi.org/10.1109/CCAA.2015.7148429

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrawan Kumar.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data Availability

Data sharing not applicable to this article as no datasets were generated during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, R., Kumar, S. & Kumar, S. Distributed TDMA Frame with Transmission Slot Estimation for Fully Connected Wireless Multihop Networks. Wireless Pers Commun 124, 815–838 (2022). https://doi.org/10.1007/s11277-021-09385-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09385-0

Keywords

Navigation