Skip to main content
Log in

Chaos and DNA Blended Hybrid Encryption Algorithm for Secure Image Transmission over DCT Pre-coded OFDM

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a hybrid security solution based on the chaotic map for a discrete cosine transform (DCT) precoded orthogonal frequency division multiplexing (OFDM) system is proposed. The two-level encryption scheme is employed to encrypt the image in the upper and physical layer of the OFDM system. At first, bit-level encryption based on Deoxyribo Nucleic Acid coding and combined chaotic map is done in the upper layer of the proposed system. Then, the encrypted bitstreams are fed to the OFDM transmitter where the real and imaginary parts of the quadrature amplitude modulated symbols are scrambled chaotically to achieve the symbol level encryption in the physical layer of OFDM system. In addition to the hybrid security model, DCT precoding is added to achieve the trade-off between bit error rate (BER) and peak to average power ratio (PAPR) performance. Experiments are carried out to validate the strength of encryption algorithms against key sensitivity, statistical and differential attacks. Further, the BER, PAPR and peak signal to noise ratio performances have been analyzed for various cases to prove the strength of the proposed system to achieve enhanced security with better power and BER performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2019). Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/COMST.2018.2878035

    Article  Google Scholar 

  2. Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2016.2558521

    Article  Google Scholar 

  3. Melki, R., Noura, H. N., Mansour, M. M., & Chehab, A. (2019). A survey on OFDM physical layer security. Physical Communication. https://doi.org/10.1016/j.phycom.2018.10.008

    Article  Google Scholar 

  4. Peng, L., Li, G., Zhang, J., Woods, R., Liu, M., & Hu, A. (2019). An investigation of using loop-back mechanism for channel reciprocity enhancement in secret key generation. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2018.2842215

    Article  Google Scholar 

  5. Xu, D., Ren, P., & Ritcey, J. A. (2018). Independence-checking coding for OFDM channel training authentication: Protocol design, security, stability, and tradeoff analysis. IEEE Transactions on Information Forensics and Security. https://doi.org/10.1109/TIFS.2018.2850334

    Article  Google Scholar 

  6. Wu, X., Yang, Z., Ling, C., & Xia, X. G. (2016). Artificial-noise-aided physical layer phase challenge-response authentication for practical OFDM transmission. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2016.2586472

    Article  Google Scholar 

  7. Lu, X., Shi, Y., Li, W., Lei, J., & Pan, Z. (2019). A joint physical layer encryption and PAPR reduction scheme based on polar codes and chaotic sequences in OFDM system. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2919598

    Article  Google Scholar 

  8. Ma, R., Dai, L., Wang, Z., & Wang, J. (2010). Secure communication in TDS-OFDM system using constellation rotation and noise insertion. IEEE Transactions on Consumer Electronics. https://doi.org/10.1109/TCE.2010.5606266

    Article  Google Scholar 

  9. Li, W., McLernon, D., Wong, K. K., Wang, S., Lei, J., & Zaidi, S. A. R. (2019). Asymmetric physical layer encryption for wireless communications. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2909298

    Article  Google Scholar 

  10. Zhang, J., Marshall, A., Woods, R., & Duong, T. Q. (2017). Design of an OFDM physical layer encryption scheme. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2016.2571264

    Article  Google Scholar 

  11. Rahmatallah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in ofdm systems: A survey and taxonomy. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/SURV.2013.021313.00164

    Article  Google Scholar 

  12. Aburakhia, S. A., Badran, E. F., & Mohamed, D. A. E. (2009). Linear companding transform for the reduction of peak-to-average power ratio of OFDM signals. IEEE Transactions on Broadcasting. https://doi.org/10.1109/TBC.2009.2013987

    Article  Google Scholar 

  13. Wang, Y., Ge, J., Wang, L., Li, J., & Ai, B. (2013). Non-linear companding transform for reduction of peak-to-average power ratio in OFDM systems. IEEE Transactions on Broadcasting. https://doi.org/10.1109/TBC.2012.2219252

    Article  Google Scholar 

  14. Slimane, S. B. (2007). Reducing the peak-to-average power ratio of OFDM signals through precoding. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2007.891409

    Article  Google Scholar 

  15. Wang, Y. C., & Luo, Z. Q. (2011). Optimized iterative clipping and filtering for PAPR reduction of OFDM signals. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2010.102910.090040

    Article  Google Scholar 

  16. Lawrey, E., & Kikkert, C. J. (1999). Peak to average power ratio reduction of OFDM signals using peak reduction carriers. In ISSPA 1999 - proceedings of the 5th international symposium on signal processing and its applications. https://doi.org/10.1109/ISSPA.1999.815777

  17. Wang, Z., Chen, F., Qiu, W., Chen, S., & Ren, D. (2018). A two layer chaotic encryption scheme of secure image transmission for DCT precoded OFDM-VLC transmission. Optics Communications. https://doi.org/10.1016/j.optcom.2017.09.095

    Article  Google Scholar 

  18. Sung, M., Lee, J., & Jeong, J. (2013). DCT-precoding technique in optical fast OFDM for mitigating fiber nonlinearity. IEEE Photonics Technology Letters. https://doi.org/10.1109/LPT.2013.2283292

    Article  Google Scholar 

  19. Alvarez, G., & Li, S. (2006). Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos, 16(08), 2129–2151. https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  20. Ravichandran, D., Praveenkumar, P., Balaguru Rayappan, J. B., & Amirtharajan, R. (2016). Chaos based crossover and mutation for securing DICOM image. Computers in Biology and Medicine, 72, 170–184. https://doi.org/10.1016/j.compbiomed.2016.03.020

    Article  Google Scholar 

  21. Ravichandran, D., Praveenkumar, P., Rayappan, J. B. B., & Amirtharajan, R. (2017). DNA chaos blend to secure medical privacy. IEEE Transactions on Nanobioscience, 16(8), 850–858. https://doi.org/10.1109/TNB.2017.2780881

    Article  Google Scholar 

  22. Ravichandran, D., Rajagopalan, S., Upadhyay, H. N., Rayappan, J. B. B., & Amirtharajan, R. (2018). Encrypted biography of biomedical image - a pentalayer cryptosystem on FPGA. Journal of Signal Processing Systems. https://doi.org/10.1007/s11265-018-1337-z

    Article  Google Scholar 

  23. Dhivya, R., Padmapriya, V., Sundararaman, R., Rayappan, J. B. B., & Amirtharajan, R. (2018). Chaos assisted variable bit steganography in transform domain. Electronics Letters, 54(23), 1332–1334. https://doi.org/10.1049/el.2018.6426

    Article  Google Scholar 

  24. Hu, X., Yang, X., Shen, Z., He, H., Hu, W., & Bai, C. (2015). Chaos-based partial transmit sequence technique for physical layer security in OFDM-PON. IEEE Photonics Technology Letters. https://doi.org/10.1109/LPT.2015.2466092

    Article  Google Scholar 

  25. Liu, B., Zhang, L., Xin, X., & Wang, Y. (2014). Physical layer security in OFDM-PON based on dimension-transformed chaotic permutation. IEEE Photonics Technology Letters, 26(2), 127–130. https://doi.org/10.1109/LPT.2013.2290041

    Article  Google Scholar 

  26. Zhang, L., Xin, X., Liu, B., & Wang, Y. (2011). Secure OFDM-PON based on chaos scrambling. IEEE Photonics Technology Letters. https://doi.org/10.1109/LPT.2011.2149512

    Article  Google Scholar 

  27. Wu, T., Zhang, C., Wei, H., & Qiu, K. (2019). PAPR and security in OFDM-PON via optimum block dividing with dynamic key and 2D-LASM. Optics Express, 27(20), 27946. https://doi.org/10.1364/OE.27.027946

    Article  Google Scholar 

  28. Wei, H., Zhang, C., Wu, T., Huang, H., & Qiu, K. (2019). Chaotic multilevel separated encryption for security enhancement of OFDM-PON. IEEE Access, 7, 124452–124460. https://doi.org/10.1109/ACCESS.2019.2938910

    Article  Google Scholar 

  29. Wu, T., Zhang, C., Chen, C., Hou, H., Wei, H., Hu, S., & Qiu, K. (2018). Security enhancement for OFDM-PON using Brownian motion and chaos in cell. Optics Express, 26(18), 22857. https://doi.org/10.1364/OE.26.022857

    Article  Google Scholar 

  30. Panta, K. R., & Armstrong, J. (2004). Effects of clipping on the error performance of OFDM in frequency selective fading channels. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2003.821142

    Article  Google Scholar 

Download references

Funding

The authors wish to express their sincere thanks to the INSPIRE Fellowship (No. DST/INSPIRE Fellowship/2015/IF150628), Department of Science and Technology (DST), India, for their financial support and FIST funding (SR/FST/ET-II/2018/221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengarajan Amirtharajan.

Ethics declarations

Conflict of interest

The authors do not have conflicts of interest associated with this publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, D., Padmaa, M., Rajagopal, N. et al. Chaos and DNA Blended Hybrid Encryption Algorithm for Secure Image Transmission over DCT Pre-coded OFDM. Wireless Pers Commun 129, 703–727 (2023). https://doi.org/10.1007/s11277-022-10152-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10152-y

Keywords

Navigation