Skip to main content

Advertisement

Log in

A Symmetric Solar Photovoltaic Inverter to Improve Power Quality Using Digital Pulsewidth Modulation Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A symmetric multilevel inverter is designed and developed by implementing the modulation techniques for generating the higher output voltage amplitude with fifteen level output. Among these modulation techniques, the proposed SFI (Solar Fed Inverter) controlled with Sinusoidal-Pulse width modulation in experimental result and simulation of Digital-PWM results is verified under the lowest THD level. There are three intelligent techniques proposed in SFI, among these intelligent controllers the MPP (Maximum Power Point) based controller gives better results. An open loop, close loop control system is implemented for the different operating load conditions (R and RL load). In the proposed system the Solar-PV array using SPR305W is maintained constant power by implementing an MPP approach to the (DC–DC) Double-lift Converter. The DC–DC converters are fed with SFI inverter circuit. The proposed structure for analysis and implementation for simulated with MATLAB/Simulink (R2020a) software. Experimental setup is carried out with Field Programmable Gate Array based processor to generate the switching sequences based on the proposed methodologies. The performance of the SFI operating with load connected system is analysis with output voltage/current, reactive power, and minimized harmonics level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Rooholahi, B., & Salomon, R. (2021). New series of single-phase symmetric/asymmetric multilevel inverter topologies with reduced number of power switches. In 2021 23rd European conference on power electronics and applications (EPE'21 ECCE Europe) (pp. 1–10). https://doi.org/10.23919/EPE21ECCEEurope50061.2021.9570521

  2. Akhavan, A., Golestan, S., Vasquez, J. C., & Guerrero, J. M. (2022). Control and stability analysis of current-controlled grid-connected inverters in asymmetrical grids. IEEE Transactions on Power Electronics, 37(12), 14252–14264. https://doi.org/10.1109/TPEL.2022.3191839

    Article  Google Scholar 

  3. Mahato, B., Majumdar, S., Jana, K. C., et al. (2022). A generalized series-connected multilevel inverter (MLI) based on reduced power electronic devices for symmetrical/asymmetrical sources. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-022-07066-z

    Article  Google Scholar 

  4. Nabae, A., Takahashi, I., & Akagi, H. (1981). A new neutral-point-clamped PWM inverter. IEEE Transactions on Industry Applications, IA–17(5), 518–523. https://doi.org/10.1109/TIA.1981.4503992

    Article  Google Scholar 

  5. Rana, R. A., Patel, S. A., Muthusamy, A., Lee, Cw., & Kim, H.-J. (2019). Review of multilevel voltage source inverter topologies and analysis of harmonics distortions in FC-MLI. Electronics, 8(11), 1329. https://doi.org/10.3390/electronics8111329

    Article  Google Scholar 

  6. Chindamani, M., & Ravichandran, C. S. (2022). A hybrid DDAO-RBFNN strategy for fault tolerant operation in fifteen-level cascaded H-bridge (15L-CHB) inverter with solar photovoltaic (SPV) system. Solar Energy, 244, 1–18. https://doi.org/10.1016/j.solener.2022.08.015

    Article  Google Scholar 

  7. Dargahi, V., Abarzadeh, M., Corzine, K. A., Enslin, J. H., Sadigh, A. K., Rodriguez, J., Blaabjerg, F., & Maqsood, A. (2019). Fundamental circuit topology of duo-active-neutral-point-clamped, duo-neutral-point-clamped, and duo-neutral-point-piloted multilevel converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(2), 1224–1242. https://doi.org/10.1109/JESTPE.2018.2859313

    Article  Google Scholar 

  8. Gandomi, A. A., Varesi, K., & Hosseini, S. H. (2015). Control strategy applied on double flying capacitor multi‐cell inverter for increasing number of generated voltage levels. IET Power Electronics, 8(6), 887–897. https://doi.org/10.1049/iet-pel.2014.0475

    Article  Google Scholar 

  9. Periasamy, M., Kaliannan, T., Selvaraj, S., Manickam, V., Joseph, S. A., & Albert, J. R. (2022). Various PSO methods investigation in renewable and nonrenewable sources. International Journal of Power Electronics and Drive Systems, 13(4), 2498–2505. https://doi.org/10.11591/ijpeds.v13.i4.pp2498-2505

  10. Perez, M. A., Ceballos, S., Konstantinou, G., Pou, J., & Aguilera, R. P. (2021). Modular multilevel converters: Recent achievements and challenges. IEEE Open Journal of the Industrial Electronics Society, 2, 224–239. https://doi.org/10.1109/OJIES.2021.3060791

    Article  Google Scholar 

  11. Albert, J. R., & Stonier, A. A. (2020). Design and development of symmetrical super-lift DC–AC converter using firefly algorithm for solar-photovoltaic applications. IET Circuits, Devices & Systems, 14(3), 261–269. https://doi.org/10.1049/iet-cds.2018.5292

    Article  Google Scholar 

  12. Dullweber, T., & Schmidt, J. (2016). Industrial silicon solar cells applying the passivated emitter and rear cell (PERC) concept a review. IEEE Journal of Photovoltaics, 6(5), 1366–1381. https://doi.org/10.1109/JPHOTOV.2016.2571627

    Article  Google Scholar 

  13. ShunmughamVanaja, D., Albert, J. R., & Stonier, A. A. (2021). An experimental investigation on solar PV fed modular STATCOM in WECS using intelligent controller. International Transactions on Electrical Energy Systems, 31(5), e12845. https://doi.org/10.1002/2050-7038.12845

    Article  Google Scholar 

  14. Vanchinathan, K., Valluvan, K. R., Gnanavel, C., Gokul, C., & Albert, J. R. (2021). An improved incipient whale optimization algorithm based robust fault detection and diagnosis for sensorless brushless DC motor drive under external disturbances. International Transactions on Electrical Energy Systems, 31(12), e13251. https://doi.org/10.1002/2050-7038.13251

    Article  Google Scholar 

  15. Albert, J. R., Sharma, A., Rajani, B., Mishra, A., Saxena, A., Nandagopal, C., & Mewada, S. (2022). Investigation on load harmonic reduction through solar-power utilization in intermittent SSFI using particle swarm, genetic, and modified firefly optimization algorithms. Journal of Intelligent & Fuzzy Systems, 42(4), 4117–4133.

    Article  Google Scholar 

  16. Ramaraju, S. K., Kaliannan, T., Joseph, S. A., Kumaravel, U., Albert, J. R., Natarajan, A. V., & Chellakutty, G. P. (2022). Design and experimental investigation on VL-MLI intended for half height (H-H) method to improve power quality using modified particle swarm optimization (MPSO) algorithm. Journal of Intelligent & Fuzzy Systems, 42(6), 5939–5956. https://doi.org/10.3233/JIFS-212583

    Article  Google Scholar 

  17. Thangamuthu, L., Albert, J. R., Chinnanan, K., & Gnanavel, B. (2022). Design and development of extract maximum power from single-double diode PV model for different environmental condition using BAT optimization algorithm. Journal of Intelligent & Fuzzy Systems, 43(1), 1091–1102. https://doi.org/10.3233/JIFS-213241

    Article  Google Scholar 

  18. Palanisamy, R., Govindaraj, V., Siddhan, S., & Albert, J. R. (2022). Experimental investigation and comparative harmonic optimization of AMLI incorporate modified genetic algorithm using for power quality improvement. Journal of Intelligent and Fuzzy System, 43(1), 1163–1176. https://doi.org/10.3233/JIFS-212668

    Article  Google Scholar 

  19. Albert, J. R. (2022). Design and investigation of solar PV fed single-source voltage-lift multilevel inverter using intelligent controllers. Journal of Control, Automation and Electrical Systems, 33, 1537–1562. https://doi.org/10.1007/s40313-021-00892-w

    Article  Google Scholar 

  20. Gnanavel, C., Muruganatham, P., Vanchinathan, K., & Albert, JR. (2021). Experimental validation and integration of solar PV fed modular multilevel inverter (MMI) and flywheel storage system. In 2021 IEEE Mysore sub section international conference (pp. 147–153). https://doi.org/10.1109/MysuruCon52639.2021.9641650

  21. Albert, J. R., Alexander, S. A., & Kumarasamy, V. (2022). Testing and performance evaluation of water pump irrigation system using voltage-lift multilevel inverter. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2022.2092773

    Article  Google Scholar 

  22. Ma, J., Wang, X., Blaabjerg, F., Harnefors, L., & Song, W. (2018). Accuracy analysis of the zero-order hold model for digital pulse width modulation. IEEE Transactions on Power Electronics, 33(12), 10826–10834. https://doi.org/10.1109/TPEL.2018.2799819

    Article  Google Scholar 

  23. Ebrahimi, J., & Karshenas, H. (2019). A new single DC source six-level flying capacitor based converter with wide operating range. IEEE Transactions on Power Electronics, 34(3), 2149–2158. https://doi.org/10.1109/TPEL.2018.2844311

    Article  Google Scholar 

  24. Albert, J. R., JohnyRenoald, A., Selvan, P., Sivakumar, P., & Rajalakshmi, R. (2022). An advanced electrical vehicle charging station using adaptive hybrid particle swarm optimization intended for renewable energy system for simultaneous distributions. Journal of Intelligent & Fuzzy Systems, 43(4), 4395–4407.

    Article  Google Scholar 

  25. Kaliannan, T., Albert, J. R., Begam, D. M., & Madhumathi, P. (2021). Power quality improvement in modular multilevel inverter using for different multicarrier PWM. European Journal of Electrical Engineering and Computer Science, 5(2), 19–27.

    Article  Google Scholar 

  26. Narendra Babu, A., & Agarwal, P. (2016). Space vector modulation for three-level NPC inverter using two-level space vector diagram. In 2016 IEEE international conference on power electronics, drives and energy systems (PEDES) (pp. 1–6). https://doi.org/10.1109/PEDES.2016.7914563

  27. Zaid, M. M., & Ro, J.-S. (2019). Switch ladder modified H-bridge multilevel inverter with novel pulse width modulation technique. IEEE Access, 7, 102073–102086. https://doi.org/10.1109/ACCESS.2019.2930720

    Article  Google Scholar 

  28. Albert, J. R., MuhamadhaBegam, D., & Nishapriya, B. (2021). Micro grid connected solar PV employment using for battery energy storage system. Journal of Xidian University, 15(3), 85–97. https://doi.org/10.37896/jxu15.3/010

    Article  Google Scholar 

  29. Suman, S., Mohanty, R., & Chatterjee, D. (2022). Comparison of multi-carrier MLI, CHB-MLI, SHEPWM and SPWM inverters for PV-grid integration. In P. Mahanta, P. Kalita, A. Paul, & A. Banerjee (Eds.), Advances in thermofluids and renewable energy: Select proceedings of TFRE 2020 (pp. 669–681). Singapore: Springer. https://doi.org/10.1007/978-981-16-3497-0_54

    Chapter  Google Scholar 

  30. Sedaghati, A., Horrillo-Quintero, P., Sánchez-Sáinz, H., & Fernández-Ramírez, L. M. (2022). Staircase modulation improvement to balance output power of stages of cascade H-bridge multilevel inverter. Computers and Electrical Engineering, 103, 108331. https://doi.org/10.1016/j.compeleceng.2022.108331

    Article  Google Scholar 

  31. Nasr Esfahani, F., Darwish, A., & Massoud, A. (2022). PV/battery grid integration using a modular multilevel isolated SEPIC-based converter. Energies, 15(15), 5462. https://doi.org/10.3390/en15155462

    Article  Google Scholar 

  32. Babypriya, B., Johny, R. A., Shyamalagowri, M., & Kannan, R. (2022). An experimental simulation testing of single-diode PV integrated MPPT grid-tied optimized control using grey wolf algorithm. Journal of Intelligent & Fuzzy Systems, 43(5), 5877–5896. https://doi.org/10.3233/JIFS-213259.

  33. Oskuee, M. R. J., Karimi, M., Ravadanegh, S. N., & Gharehpetian, G. B. (2015). An innovative scheme of symmetric multilevel voltage source inverter with lower number of circuit devices. IEEE Transactions on Industrial Electronics, 62(11), 6965–6973.

    Article  Google Scholar 

  34. Prabaharan, N., & Palanisamy, K. (2017). Analysis of cascade H-bridge multilevel inverter configuration with double level circuit. IET Power Electronics, 10(9), 1023–1033.

    Article  Google Scholar 

  35. Kumar, N., Saha, T. K., & Dey, J. (2019). Multilevel inverter MLI based stand-alone photovoltaic system: Modeling analysis, and control. IEEE Systems Journal, 99, 1–7.

    Google Scholar 

  36. Renoald, A. J., Kannan, R., Karthick, S., Selvan, P., Sivakumar, A., et al. (2022). An experimental and investigation on asymmetric modular multilevel inverter an approach with reduced number of semiconductor devices. Journal of Electrical Systems, 18(3), 318–330.

  37. Rajani, B., Rayapati, V., Srinivas, R., & Varalakshmi, K. (2022). Comparative analysis of controller tuning for multi-area power system using swarm optimization techniques. In J. Kumar, M. Tripathy, & P. Jena (Eds.), Control applications in modern power systems: Select proceedings of EPREC 2021. (Vol. 8). Springer. https://doi.org/10.1007/978-981-19-0193-5_5

    Chapter  Google Scholar 

  38. Hasan, N. S., Rosmin, N., Osman, D. A. A., & Mustaamal, A. H. (2017). Reviews on multilevel converter and modulation techniques. Renewable and Sustainable Energy Reviews, 80, 163–174.

    Article  Google Scholar 

  39. Susheela, N., Kumar, P. S., & Sharma, S. K. (2018). Generalized algorithm of reverse mapping based SVPWM strategy for diode-clamped multilevel inverters. IEEE Transactions on Industry Applications, 54(3), 2425–2437.

    Article  Google Scholar 

  40. Oghoradaa, O. J. K., Zhangb, L., Esana, B. A., & Dickson, E. (2019). Carrier based sinusoidal pulse-width modulation techniques for flying capacitor modular multilevel cascade converter. Heliyon, 5(12), 1–16.

    Article  Google Scholar 

  41. Ounejjar, Y., Al-Haddad, K., & Gregoire, L. A. (2011). Packed U cells multilevel converter topology: Theoretical study and experimental validation. IEEE Transactions on Industrial Electronics, 58(4), 1294–1306.

    Article  Google Scholar 

  42. Gnanavel, C., Johny Renoald, A., Saravanan, S., Vanchinathan, K., & Sathishkhanna, P. (2022). An experimental investigation of fuzzy-based voltage-lift multilevel inverter using solar photovoltaic application. (eds A. Chitra, V. Indragandhi and W. Razia Sultana). In Chitra, A., Indragandhi, V., & Razia Sultana, W. (Eds.), Smart grids and green energy systems. https://doi.org/10.1002/9781119872061.ch5

  43. Palanivel, P., & Dash, S. S. (2011). Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques. IET Power Electronics, 4(8), 951–958.

    Article  Google Scholar 

  44. Kala, P., & Arora, S. (2017). A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renewable and Sustainable Energy Reviews, 76, 905–931.

    Article  Google Scholar 

  45. Albert, J. R., Kaliannan, T., Singaram, G., Sehar, F. I. R. E., Periasamy, M., & Kuppusamy, S. A remote diagnosis using variable fractional order with reinforcement controller for solar-MPPT intelligent system. In Photovoltaic Systems (pp. 45–64). CRC press. https://doi.org/10.1201/9781003202288.

Download references

Funding

This research has not received any funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johny Renoald Albert.

Ethics declarations

Conflict of interest

Author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. There is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, J.R., Ramasamy, K., Joseph Michael Jerard, V. et al. A Symmetric Solar Photovoltaic Inverter to Improve Power Quality Using Digital Pulsewidth Modulation Approach. Wireless Pers Commun 130, 2059–2097 (2023). https://doi.org/10.1007/s11277-023-10372-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10372-w

Keywords

Navigation