Skip to main content
Log in

Exploiting social circle broadness for influential spreaders identification in social networks

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Influential spreaders identification in social networks contributes to optimize the use of available resources and ensure the more efficient spread of information. In contrast to common belief that highly connected or core located users are most crucial spreaders, this paper shows that both user’s local and global structural properties matter in information diffusion. We propose a new metric, social circle broadness, to measure a user’s information spreading influence by qualitatively combining the two above properties. Firstly, a definition of social circle diversity is introduced to measure the dispersion extent of a user’s friends distribution in the network. Based on it, a method to calculate each user’s local social circle broadness is presented. Preliminary experiments on a coauthor dataset demonstrate the effectiveness of social circle broadness in information diffusion. Furthermore, a social circle weighted PageRank (SCWPR) algorithm is proposed to iteratively rank each user’s global social circle broadness. We conduct extensive comparison experiments against six state-of-the-art baseline methods on four real social network datasets. The results show that SCWPR outperforms all of them for influential spreaders identification in information propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aditya, P., Scott, C.: Identifying topical authorities in microblogs. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM’2011)

  2. Amitl, G., Francesco, B., Laks, V.S.L.: Learning influence probabilities in social networks. In: Proceedings of the 3th ACM International Conference on Web Search and Data Mining (WSDM’2010)

  3. Anderson, R.M., May, R.M., Anderson, B.: Infectious Disease of Humans: Dynamic and Control. Oxford Science, Oxford (1992)

    Google Scholar 

  4. Baumes, J., Goldberg, M., Krishnamoorthy, M., Magdon-Ismail, M., Preston, N.: Finding communities by clustering a graph into overlapping subgraphs. In: IADIS International Conference on Applied Computing (2005)

  5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebrve, E.: Fast unfolding communities in large networks. In: Journal of Statistical Mechanics: Theory and Experiment, P10008 (2008)

  6. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Networks 30, 136C145 (2008)

    Article  Google Scholar 

  7. Burt, R.S.: Structure Holes: the Social Structure of Competition. Harvard University Press, Massachusetts (1992)

    Google Scholar 

  8. Cao, J., Wu, Z.A., Wu, J.J., Xiong, H.: SAIL: summation-bAsed incremental learning for information-theoretic text clustering. IEEE Trans. Syst. Man Cybern. B 43(2), 570–584 (2013)

    Google Scholar 

  9. Carmi, S., Havlin, S., Kirkpatrick, S., Shir, Y., Shir, E.: A model of Internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. U.S.A. 104, 11150–11154 (2007)

    Article  Google Scholar 

  10. Chung, K.S.K., Hossain, L.: Network structure, position, ties and ICT use in distributed knowledge-intensive work. In: Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work (CSCW’2008)

  11. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  12. Cui, Y., Pei, J., Tang, G.T., Luk, W.S., Jiang, D.X., Hua, M.: Finding email correspondents in online social networks. World Wide Web J. 16(2), 195–218 (2013)

    Article  Google Scholar 

  13. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley Series in Mathematical & Computational Biology, New York (2000)

    Google Scholar 

  14. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory 49(7), 1858–1860 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  16. Goh, K.C.I., Oh, E., Kahng, B., Kim, D.: Betweenness centrality correlation in social networks. Phys. Rev. E, 61 (2003)

    Google Scholar 

  17. Goldenberg, J., Han, S., Lehmann, D.R., Hong, J.W.: The role of hubs in the adoption. J. Mark. 73, 1–43 (2011)

    Article  Google Scholar 

  18. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3, 63–69 (2007)

    Article  Google Scholar 

  19. Haythornthwaite, C.: Social network analysis: an approach and technique for the study of information exchange. Libr. Inf. Sci. Res. 18(4), 323–342 (1996)

    Article  Google Scholar 

  20. Hopcroft, J., Lou, T., Tang, J.: Who will follow you back? reciprocal relationship prediction. In: Proceedings of the 20th ACM Conference on Information and Knowledge Management (CIKM’2011), pp. 1137C–1146 (2011)

  21. Hui, L., Sourav, S.B., Aixin, S.: CASINO: towards conformityaware scoial influence analysis in online social networks. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM’2011)

  22. Jie, T., Jing, Z., Ruoming, J.: Topic level expertise search over heterogeneous networks. Mach. Learn. 82, 211–237 (2011)

    Article  MathSciNet  Google Scholar 

  23. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  24. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In Proceedings of the 9th ACM SIGKDD Internatioanl Conference on Knowledge Discovery and Data Mining (KDD’2003), pp. 1175C–1180 (2003)

  25. Kendall, M.: A new measure of rank correlation. Biometrika 30(1–2), 81–93 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identifying influential spreaders in complex networks. Nat. Phys. 6, 888C893 (2010)

    Article  Google Scholar 

  27. Lou, T., Tang, J., Hopcroft, J., Fang, Z., Ding, X.: Learning to predict reciprocity and triadic closure in social networks. In: TKDD (2013)

  28. Michael, G.N., Ching-man, A.Y., Nicholas, G., Christoph, M., Nigel, S.: Telling experts from spammers: expertise ranking in folksonomies. In: Proceedings of the 32th Annual International ACM SIGIR Conference (SIGIR’2011)

  29. Musial, K., Kazienko, P.: Social networks on the internet. World Wide Web J. 16(1), 31–72 (2013)

    Article  Google Scholar 

  30. Nitin, A., Huan, L., Lei, T.: Identifying the influential bloggers in a community. In: Proceedings of the 1th ACM International Conference on Web Search and Data Mining (WSDM’2008)

  31. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. In: Proceedings of the 7th International World Wide Web Conference (WWW’1998).

  32. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814 (2005)

    Article  Google Scholar 

  33. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  34. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scalefree networks. Phys. Rev. Lett. 3200–3203, 86 (2002)

    Google Scholar 

  35. Tang, J., Zhang, J., Yao, L.M., Li, J.Z., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’2008)

  36. Tang, J., Zhang, D., Yao, L.M.: Social network extraction of academic researchers. In: Proceedings of 2007 IEEE International Conference on Data Mining (ICDM’2007)

  37. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. Proc. Natl. Acad. Sci. U. S. A. 109(16), 5962–5966 (2012)

    Article  Google Scholar 

  38. Wei, F., Qian, W.N., Wang, C., Zhou, A.Y.: Detecting overlapping community structures in networks. World Wide Web J 12(2), 235–261 (2009)

    Article  Google Scholar 

  39. Weng, J.S., Lim, E.P., Jiang, J.: TwitterRank: finding topic sensitive influential twitterers. In: Proceedings of the 3th ACM International Conference on Web Search and Data Mining (WSDM’2010)

  40. Zhang, R.C., Tran, T., Mao, Y.Y.: Opinion helpfulness prediction in the presence of words of few mouths. World Wide Web J. 15(2), 117–138 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyang Liu or Zhoujun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Wang, F., Chen, Y. et al. Exploiting social circle broadness for influential spreaders identification in social networks. World Wide Web 18, 681–705 (2015). https://doi.org/10.1007/s11280-014-0277-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-014-0277-1

Keywords

Navigation