Skip to main content
Log in

Multi-relational reinforcement for computing credibility of nodes

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Nowadays, growing number of social networks are available on the internet, with which users can conveniently make friends, share information, and exchange ideas with each other. As the result, large amount of data are generated from activities of those users. Such data are regarded as valuable resources to support different mining tasks, such as predicting friends for a user, ranking users in terms of their influence on the social network, or identifying communities with common interests. Traditional algorithms for those tasks are often designed under the assumption that a user selects another user as his friend based on their common interests. As a matter of fact, users on a social network may not always develop their friends with common interest. For example, a user may randomly select other users as his friends just in order to attract more links reversely from them. Therefore, such links may not indicate his influence. In this paper, we study the user rank problem in terms of their ‘real’ influences. For this sake, common interest relationships among users are established besides their friend relationships. Then, the credible trust link from one node to another is on account of their similarities, which means the more similar the two users, the more credible their trust relation. So the credibility of a node is high if its trust inlinks are credible enough. In this work, we propose a framework that computes the credibility of nodes on a multi-relational network using reinforcement techniques. To the best of our knowledge, this is the first work to assess credibility exploited knowledge on multi-relational social networks. The experimental results on real data sets show that our framework is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adali, S., Escriva, R., Goldberg, M.K., Hayvanovych, M., Magdon-Ismail, M., Szymanski, B.K., Wallace, W.A., Williams, G.: Measuring behavioral trust in social networks. In: Intelligence and Security Informatics (ISI), vol. 2010, pp 150–152. IEEE International Conference on IEEE (2010)

  2. Antonellis, I., Garcia-Molina, H., Chang, C.C.: Simrank++: query rewriting through link analysis of the click graph. PVLDB 1(1), 408–421 (2008)

    Google Scholar 

  3. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972)

    Article  Google Scholar 

  4. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. CoRR 0212002 (2002)

  5. Cartwright, D., Harary, F.: Structural balance: a generalization of heider’s theory. Psychol. Rev. 63(5), 277–293 (1956)

    Article  Google Scholar 

  6. Cugelman, B., Thelwall, M., Dawes, P.: Website credibility, active trust and behavioural intent. In: Persuasive technology, pp 47–57. Springer (2008)

  7. de Kerchove, C., Dooren, P.V.: The pagetrust algorithm: how to rank Web pages when negative links are allowed?. In: SDM, pp 346–352 (2008)

  8. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  9. Guha, R.V., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: WWW, pp 403–412 (2004)

  10. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.O.: Combating Web spam with trustrank. In: VLDB, pp 576–587 (2004)

  11. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for Web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

    Article  Google Scholar 

  12. Heider, F.: Attitudes and cognitive organization. J. Psychology 21, 107–112 (1946)

    Article  Google Scholar 

  13. International, P.S.R.A., WebWatch, C.R.: Leap of Faith: Using the Internet Despite the Dangers: Results of a National Survey for Consumer Reports WebWatch. Consumer Reports WebWatch (2005)

  14. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD, pp 538–543 (2002)

  15. Jin, X., Luo, J., Yu, J., Wang, G., Joshi, D., Han, J.: Reinforced similarity integration in image-rich information networks. IEEE Trans. Knowl. Data Eng. 25(2), 448–460 (2013)

    Article  Google Scholar 

  16. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in p2p networks. In: WWW, pp 640–651 (2003)

  17. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koutra, D., Ke, T.Y., Kang, U., Chau, D.H., Pao, H.K.K., Faloutsos, C.: Unifying guilt-by-association approaches: Theorems and fast algorithms. In: ECML/PKDD, vol. 2, pp 245–260 (2011)

  19. Lee, D.H., Brusilovsky, P.: Does trust influence information similarity? Recommender Systems Social Web, 10 (2009)

  20. Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Predicting positive and negative links in online social networks. In: WWW, pp 641–650 (2010)

  21. Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Signed networks in social media. In: CHI, pp 1361–1370 (2010)

  22. Li, R.H., Yu, J.X., Huang, X., Cheng, H.: A framework of algorithms: Computing the bias and prestige of nodes in trust networks (2012). CoRR 1207.5661

  23. Li, Y.M., Wu, C.T., Lai, C.Y.: A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship. Decis. Support. Syst. 55(3), 740–752 (2013)

    Article  Google Scholar 

  24. Lizorkin, D., Velikhov, P., Grinev, M.N., Turdakov, D.: Accuracy estimate and optimization techniques for simrank computation. PVLDB 1(1), 422–433 (2008)

    Google Scholar 

  25. Macy, M.W., Skvoretz, J.: The evolution of trust and cooperation between strangers: a computational model. Am. Sociol. Rev., 638–660 (1998)

  26. Mishra, A., Bhattacharya, A.: Finding the bias and prestige of nodes in networks based on trust scores. In: WWW, pp 567–576 (2011)

  27. Nee, V., Sanders, J.: Trust in ethnic ties: Social capital and immigrants. Trust Society 2, 374–392 (2001)

    Google Scholar 

  28. Orman, L.V.: Bayesian inference in trust networks. ACM Trans. Manage. Inf. Syst. 4(2), 7:1–7:21 (2013)

    Article  Google Scholar 

  29. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)

  30. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: International Semantic Web Conference, pp 351–368 (2003)

  31. Sherchan, W., Nepal, S., Paris, C.: A survey of trust in social networks. ACM Comput. Surv. 45(4), 47 (2013)

    Article  Google Scholar 

  32. Simons, H.W., Berkowitz, N.N., Moyer, R.J.: Similarity, credibility, and attitude change: a review and a theory. Psychol. Bull. 73(1), 1 (1970)

    Article  Google Scholar 

  33. Srikantaiah, K.C., Srikanth, P.L., Tejaswi, V., Shaila, K., Venugopal, K.R., Patnaik, L.M.: Ranking search engine result pages based on trustworthiness of websites. CoRR 1209.5244 (2012)

  34. Stolle, D.: Clubs and congregations: The benefits of joining an association. Trust Society 2(374), V392 (2001)

    Google Scholar 

  35. Wang, G., Hu, Q., Yu, P.S.: Influence and similarity on heterogeneous networks. In: CIKM, pp 1462–1466 (2012)

  36. Wu, B., Goel, V., Davison, B.D.: Topical trustrank: using topicality to combat Web spam. In: WWW, pp 63–72 (2006)

  37. Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information providers on the web. IEEE Trans. Knowl. Data Eng. 20(6), 796–808 (2008)

    Article  Google Scholar 

  38. Ziegler, C.N., Golbeck, J.: Investigating interactions of trust and interest similarity. Decis. Support. Syst. 43(2), 460–475 (2007)

    Article  Google Scholar 

  39. Ziegler, C.N., Lausen, G.: Analyzing correlation between trust and user similarity in online communities. In: Trust management, pp 251–265. Springer (2004)

  40. Zafarani, R., Liu, H.: Social computing data repository at asu (2009)

  41. Zhao, P., Han, J., Sun, Y.: P-rank: a comprehensive structural similarity measure over information networks. In: CIKM, pp 553–562 (2009)

Download references

Acknowledgments

This project was supported by grants MYRG105(Y1-L3)-FST13-GZG, MYRG 2015-00070-FST, FDCT/106/2012/A3, and FDCT/116/2013/A3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishu Hu.

Appendix

Appendix

1.1 Proof of convergence

In this Appendix, we present the technical details of the proof of general case of ab, N(a) ≠ and N(b) ≠ , 0 ≤ s(a, b) − S i m (ϕ)(a, b) ≤ D (ϕ+1).

Induction Basis Let us prove that (10) holds for ϕ = 0, i.e. that for every two nodes a, b:

$$ s(a,b) - Sim^{(0)}(a,b) \leq D $$
(13)

Since ab, N(a) ≠ and N(b) ≠ , then S i m (0)(a, b) = 0 by definition, s(a, b) is defined by the general recursive (1) and (8), and consequently

$$ \begin{array}{llll} &Sim^{((\phi+1))}(u_{i}, u_{j}) = \alpha Sim_{T}^{(\phi+1)}(u_{i}, u_{j}) + (1-\alpha)Sim_{S}^{(\phi+1)}(u_{i}, u_{j})\\ &= \alpha \left( \frac{D\cdot\beta}{|d^{i}(u_{i})||d^{i}(u_{j})|}\underset{u_{p} \in d^{i}(u_{i})}{\sum}\underset{u_{q} \in d^{i}(u_{j})}{\sum}{Sim^{(\phi)}(u_{p}, u_{q})}\right. \\ &~~~~~~~~~\left.+\frac{D\cdot(1-\beta)}{|d^{o}(u_{i})||d^{o}(u_{j})|}\underset{u_{p} \in d^{o}(u_{i})}{\sum}\underset{u_{q} \in d^{o}(u_{j})}{\sum}{Sim^{(\phi)}(u_{p}, u_{q})}\right) \\ &+ (1 - \alpha) \cdot (D \cdot evidence(u_{i}, u_{j}) \cdot \underset{(u_{i},o_{i})\in E_{b}}{\sum}\underset{(u_{j},o_{j})\in E_{b}}{\sum}{(\textbf{W}(u_{i}, o_{i})\textbf{W}(u_{j}, o_{j}) \cdot} \\ &~~~~~~~~~evidence(o_{i}, o_{j}) \cdot \underset{(o_{i},u_{i})\in E_{b}}{\sum}\underset{(o_{j},u_{j})\in E_{b}}{\sum}{\textbf{W}(o_{i}, u_{i})\textbf{W}(o_{j}, u_{j}){Sim^{(\phi)}(u_{i}, u_{j})})}) \\ &= \alpha \cdot D \cdot \left( \frac{\beta}{|d^{i}(u_{i})||d^{i}(u_{j})|}\underset{u_{p} \in d^{i}(u_{i})}{\sum}\underset{u_{q} \in d^{i}(u_{j})}{\sum} {Sim^{(\phi)}(u_{p}, u_{q})} \right.\\ &~~~~~~~~~\left.+\frac{1-\beta}{|d^{o}(u_{i})||d^{o}(u_{j})|}\underset{u_{p} \in d^{o}(u_{i})}{\sum}\underset{u_{q} \in d^{o}(u_{j})}{\sum} {Sim^{(\phi)}(u_{p}, u_{q})}\right) \\ &+ (1 - \alpha) \cdot D \cdot (evidence(u_{i}, u_{j}) \cdot \underset{(u_{i},o_{i})\in E_{b}}{\sum}\underset{(u_{j},o_{j})\in E_{b}}{\sum}{(\textbf{W}(u_{i}, o_{i})\textbf{W}(u_{j}, o_{j}) \cdot} \\ &~~~~~~~~~evidence(o_{i}, o_{j}) \cdot \underset{(o_{i},u_{i})\in E_{b}}{\sum}\underset{(o_{j},u_{j})\in E_{b}}{\sum}{\textbf{W}(o_{i}, u_{i})\textbf{W}(o_{j}, u_{j}) \cdot {Sim^{(\phi)}(u_{i}, u_{j})})}) \\ \end{array} $$
$$ \begin{array}{llllll} &s(a,b) - Sim^{(0)}(a,b) = s(a,b) \\ &= \alpha \cdot D \cdot \left( \frac{\beta}{|d^{i}(a)||d^{i}(b)|}\underset{u_{p} \in d^{i}(a)}{\sum}\underset{u_{q} \in d^{i}(b)}{\sum}\underbrace{s(u_{p},u_{q})}_{\leq 1} \right.\\ &~~~~~~~~~\left.+\frac{1-\beta}{|d^{o}(a)||d^{o}(b)|}\underset{u_{p} \in d^{o}(a)}{\sum}\underset{u_{q} \in d^{o}(b)}{\sum}\underbrace{s(u_{p},u_{q})}_{\leq 1}\right) \\ &+ (1 - \alpha) \cdot D \cdot (evidence(a, b) \cdot \underset{(a,o_{i})\in E_{b}}{\sum}\underset{(b,o_{j})\in E_{b}}{\sum}{(\textbf{W}(a, o_{i})\textbf{W}(b, o_{j}) \cdot} \\ &~~~~~~~~~evidence(o_{i}, o_{j}) \cdot \underset{(o_{i},u_{i})\in E_{b}}{\sum}\underset{(o_{j},u_{j})\in E_{b}}{\sum}{\textbf{W}(o_{i}, u_{i})\textbf{W}(o_{j}, u_{j})\underbrace{s(u_{i},u_{j})}_{\leq 1})}) \\ \end{array} $$
$$ \begin{array}{llllll} &\leq \alpha \cdot D \cdot \left( \frac{\beta}{|d^{i}(a)||d^{i}(b)|}\underset{u_{p} \in d^{i}(a)}{\sum}\underset{u_{q} \in d^{i}(b)}{\sum} 1 \right.\\ &~~~~~~~~~\left.+\frac{1-\beta}{|d^{o}(a)||d^{o}(b)|}\underset{u_{p} \in d^{o}(a)}{\sum}\underset{u_{q} \in d^{o}(b)}{\sum} 1\right) \\ &+ (1 - \alpha) \cdot D \cdot (evidence(a, b) \cdot \underset{(a,o_{i})\in E_{b}}{\sum}\underset{(b,o_{j})\in E_{b}}{\sum}{(\textbf{W}(a, o_{i})\textbf{W}(b, o_{j}) \cdot} \\ &~~~~~~~~~evidence(o_{i}, o_{j}) \cdot \underset{(o_{i},u_{i})\in E_{b}}{\sum}\underset{(o_{j},u_{j})\in E_{b}}{\sum}{\textbf{W}(o_{i}, u_{i})\textbf{W}(o_{j}, u_{j}) \cdot 1)}) \\ &\leq \alpha \cdot D (\beta + (1 - \beta)) + (1 - \alpha) \cdot D = D \\ \end{array} $$

Which proves (13). Other iterative algorithms such as [17, 24, 29] also exhibit similar convergence property.

Inductive step Provided that (10) holds for a given ϕ for all node pairs, let us prove that (10) holds for ϕ + 1 as well:

$$ \begin{array}{lllllll} &s(a,b) - Sim^{(\phi + 1)}(a,b) \\ &= \left( \alpha \cdot D \cdot \left( \frac{\beta}{|d^{i}(a)||d^{i}(b)|}\underset{u_{p} \in d^{i}(a)}{\sum}\underset{u_{q} \in d^{i}(b)}{\sum}{s(u_{p},u_{q})} \right.\right.\\ &~~~~~~~~~\left.+\frac{1-\beta}{|d^{o}(a)||d^{o}(b)|}\underset{u_{p} \in d^{o}(a)}{\sum}\underset{u_{q} \in d^{o}(b)}{\sum}{s(u_{p},u_{q})}\right) \\ &+ (1 - \alpha) \cdot D \cdot (evidence(a, b) \cdot \underset{(a,o_{i})\in E_{b}}{\sum}\underset{(b,o_{j})\in E_{b}}{\sum}{(\textbf{W}(a, o_{i})\textbf{W}(b, o_{j}) \cdot} \\ &~~~~~~~~~evidence(o_{i}, o_{j}) \cdot \underset{(o_{i},u_{i})\in E_{b}}{\sum}\underset{(o_{j},u_{j})\in E_{b}}{\sum}{\textbf{W}(o_{i}, u_{i})\textbf{W}(o_{j}, u_{j}){s(u_{i},u_{j})})})) \\ &- \left( \alpha \cdot D \cdot \left( \frac{\beta}{|d^{i}(a)||d^{i}(b)|}\underset{u_{p} \in d^{i}(a)}{\sum}\underset{u_{q} \in d^{i}(b)}{\sum}{Sim^{(\phi)}{(u_{p},u_{q})}} \right.\right.\\ &~~~~~~~~~\left.+\frac{1-\beta}{|d^{o}(a)||d^{o}(b)|}\underset{u_{p} \in d^{o}(a)}{\sum}\underset{u_{q} \in d^{o}(b)}{\sum}{Sim^{(\phi)}{(u_{p},u_{q})}}\right) \\ &+ (1 - \alpha) \cdot D \cdot (evidence(a, b) \cdot \underset{(a,o_{i})\in E_{b}}{\sum}\underset{(b,o_{j})\in E_{b}}{\sum}{(\textbf{W}(a, o_{i})\textbf{W}(b, o_{j}) \cdot} \\ &~~~~~~~~~evidence(o_{i}, o_{j}) \cdot \underset{(o_{i},u_{i})\in E_{b}}{\sum}\underset{(o_{j},u_{j})\in E_{b}}{\sum}{\textbf{W}(o_{i}, u_{i})\textbf{W}(o_{j}, u_{j}){Sim^{(\phi)}{(u_{i},u_{j})}})})) \\ &= \alpha \cdot D \cdot \left( \frac{\beta}{|d^{i}(a)||d^{i}(b)|}\underset{u_{p} \in d^{i}(a)}{\sum}\underset{u_{q} \in d^{i}(b)}{\sum}{\underbrace{\left( s(u_{p},u_{q}) - Sim^{(\phi)}{(u_{p},u_{q})}\right)}_{\leq D^{\phi+1} by~inductive~hypothesis}} \right.\\ &~~~~~~~~~\left.+\frac{1-\beta}{|d^{o}(a)||d^{o}(b)|}\underset{u_{p} \in d^{o}(a)}{\sum}\underset{u_{q} \in d^{o}(b)}{\sum}{\underbrace{\left( s(u_{p},u_{q}) - Sim^{(\phi)}{(u_{p},u_{q})}\right)}_{\leq D^{\phi+1} by~inductive~hypothesis}}\right) \\ &+ (1 - \alpha) \cdot D \cdot (evidence(a, b) \cdot \underset{(a,o_{i})\in E_{b}}{\sum}\underset{(b,o_{j})\in E_{b}}{\sum}{(\textbf{W}(a, o_{i})\textbf{W}(b, o_{j}) \cdot}\\ &~~~~~~~~~\!\!\!\!evidence(o_{i}, o_{j}) \cdot\!\!\!\! \underset{(o_{i},u_{i})\in E_{b}}{\sum}\underset{(o_{j},u_{j})\in E_{b}}{\sum}\!\!\!\!{\textbf{W}(o_{i}, u_{i})\textbf{W}(o_{j}, u_{j}){\underbrace{(s(u_{i},u_{j}) - Sim^{(\phi)}{(u_{i},u_{j})})}_{\leq D^{\phi+1} by~inductive~hypothesis}}})) \end{array} $$
$$ \begin{array}{lllllll} &\leq \alpha \cdot D \cdot \left( \frac{\beta}{|d^{i}(a)||d^{i}(b)|}\underset{u_{p} \in d^{i}(a)}{\sum}\underset{u_{q} \in d^{i}(b)}{\sum} D^{\phi+1}\right. \\ &~~~~~~~~~\left.+\frac{1-\beta}{|d^{o}(a)||d^{o}(b)|}\underset{u_{p} \in d^{o}(a)}{\sum}\underset{u_{q} \in d^{o}(b)}{\sum} D^{\phi+1}\right) \\ &+ (1 - \alpha) \cdot D \cdot (evidence(a, b) \cdot \underset{(a,o_{i})\in E_{b}}{\sum}\underset{(b,o_{j})\in E_{b}}{\sum}{(\textbf{W}(a, o_{i})\textbf{W}(b, o_{j}) \cdot} \\ &~~~~~~~~~evidence(o_{i}, o_{j}) \cdot \underset{(o_{i},u_{i})\in E_{b}}{\sum}\underset{(o_{j},u_{j})\in E_{b}}{\sum}{\textbf{W}(o_{i}, u_{i})\textbf{W}(o_{j}, u_{j}) \cdot D^{\phi+1})}) \\ &\leq D \cdot (\alpha \cdot (\beta \cdot D^{\phi+1} + (1 - \beta) \cdot D^{\phi+1}) + (1 - \alpha)\cdot D^{\phi+1}) = D \cdot D^{\phi+1} = D^{(\phi+1)+1} \\ \end{array} $$

The latter finally proves (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Gong, Z. Multi-relational reinforcement for computing credibility of nodes. World Wide Web 19, 1103–1124 (2016). https://doi.org/10.1007/s11280-015-0375-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-015-0375-8

Keywords

Navigation