Skip to main content
Log in

Adaptive knowledge subgraph ensemble for robust and trustworthy knowledge graph completion

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Knowledge graph (KG) embedding approaches are widely used to infer underlying missing facts based on intrinsic structure information. However, the presence of noisy facts in automatically extracted or crowdsourcing KGs significantly reduces the reliability of various embedding learners. In this paper, we thoroughly study the underlying reasons for the performance drop in dealing with noisy knowledge graphs, and we propose an ensemble framework, Adaptive Knowledge Subgraph Ensemble (AKSE), to enhance the robustness and trust of knowledge graph completion. By employing an effective knowledge subgraph extraction approach to re-sample the sub-components from the original knowledge graph, AKSE generates different representations for learning diversified base learners (e.g., TransE and DistMult), which substantially alleviates the noise effect of KG embedding. All embedding learners are integrated into a unified framework to reduce generalization errors via our simple or adaptive weighting schemes, where the weight is allocated based on each individual learner’s prediction capacity. Experimental results show that the robustness of our ensemble framework outperforms exiting knowledge graph embedding approaches on manually injected noise as well as inherent noisy extracted KGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. https://rtw.ml.cmu.edu/rtw/

  2. https://github.com/TimDettmers/ConvE

  3. https://github.com/thunlp/OpenKE

References

  1. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD, pp. 1247–1250 (2008)

  2. Bordes, A., Usunier, N., García-durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)

  5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fumera, G., Roli, F., Serrau, A.: A theoretical analysis of bagging as a linear combination of classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1293–1299 (2008)

    Article  Google Scholar 

  7. Galar, M., Fernández, A., Tartas, E.B., Sola, H.B., Herrera, F.: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C 42(4), 463–484 (2012)

    Article  Google Scholar 

  8. Han, X., Cao, S., Lv, X., Lin, Y., Liu, Z., Sun, M., Li, J.: Openke: an open toolkit for knowledge embedding. In: EMNLP, pp. 139–144 (2018)

  9. Kadlec, R., Bajgar, O., Kleindienst, J.: Knowledge base completion: baselines strike back. In: Rep4NLP@ACL, pp. 69–74 (2017)

  10. Kolomiyets, O., Moens, M.F.: A survey on question answering technology from an information retrieval perspective. Inform. Sci. 181(24), 5412–5434 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

  12. Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. GeoInformatica 22 (2), 335–362 (2018)

    Article  Google Scholar 

  13. Liu, G., Liu, Y., Liu, A., Li, Z., Zheng, K., Wang, Y., Zhou, X.: Context-aware trust network extraction in large-scale trust-oriented social networks. World Wide Web 21(3), 713–738 (2018)

    Article  Google Scholar 

  14. Liu, G., Liu, Y., Zheng, K., Liu, A., Li, Z., Wang, Y., Zhou, X.: Mcs-gpm: multi-constrained simulation based graph pattern matching in contextual social graphs. IEEE Trans. Knowl. Data Eng. 30(6), 1050–1064 (2017)

    Article  Google Scholar 

  15. Liu, G., Wang, Y., Orgun, M.A.: Optimal social trust path selection in complex social networks. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

  16. Liu, G., Wang, Y., Orgun, M.A., Lim, E.P.: Finding the optimal social trust path for the selection of trustworthy service providers in complex social networks. IEEE Trans. Serv. Comput. 6(2), 152–167 (2011)

    Article  Google Scholar 

  17. Melville, P., Shah, N., Mihalkova, L., Mooney, R.J.: Experiments on ensembles with missing and noisy data. In: MCS, pp. 293–302 (2004)

    Chapter  Google Scholar 

  18. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751 (2013)

  19. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  20. Mitchell, T.M., et al., W.W.C.: Never-ending learning. Commun. ACM 61 (5), 103–115 (2018)

  21. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  22. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In: AAAI, pp. 1955–1961 (2016)

  23. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816 (2011)

  24. Pan, S., Hu, R., Fung, S.f., Long, G., Jiang, J., Zhang, C.: Learning graph embedding with adversarial training methods. arXiv:1901.01250 (2019)

  25. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  26. Pujara, J., Augustine, E., Getoor, L.: Sparsity and noise: where knowledge graph embeddings fall short. In: EMNLP, pp. 1751–1756 (2017)

  27. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: ESWC, pp. 593–607 (2018)

  28. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. In: AAAI, pp. 4444–4451 (2017)

  29. Trouillon, T., Dance, C.R., Gaussier, É., Welbl, J., Riedel, S., Bouchard, G.: Knowledge graph completion via complex tensor factorization. J. Mach. Learn. Res. 18, 130:1–130:38 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Ueda, N., Nakano, R.: Generalization error of ensemble estimators. In: ICNN, vol. 1, pp. 90–95. https://doi.org/10.1109/ICNN.1996.548872 (1996)

  31. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  32. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

  33. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. arXiv:1901.00596(2019)

  34. Xiao, M., Ma, K., Liu, A., Zhao, H., Li, Z., Zheng, K., Zhou, X.: Sra: secure reverse auction for task assignment in spatial crowdsourcing. IEEE Transactions on Knowledge and Data Engineering (2019)

  35. Xiao, M., Wu, J., Huang, L., Cheng, R., Wang, Y.: Online task assignment for crowdsensing in predictable mobile social networks. IEEE Trans. Mob. Comput. 16(8), 2306–2320 (2016)

    Article  Google Scholar 

  36. Xie, R., Liu, Z., Lin, F., Lin, L.: Does William Shakespeare REALLY Write Hamlet? Knowledge Representation Learning with Confidence. In: AAAI, pp. 4954–4961 (2018)

  37. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

  38. Zhai, D., Sun, Y., Liu, A., Li, Z., Liu, G., Zhao, L., Zheng, K.: Towards secure and truthful task assignment in spatial crowdsourcing. World Wide Web pp. 1–24 (2018)

  39. Zhao, Y., Liu, G., Zheng, K., Liu, A., Li, Z., Zhou, X.: A context-aware approach for trustworthy worker selection in social crowd. World Wide Web 20(6), 1211–1235 (2017)

    Article  Google Scholar 

  40. Zhu, F., Wang, Y., Chen, C., Liu, G., Orgun, M.A., Wu, J.: A deep framework for cross-domain and cross-system recommendations. In: IJCAI, pp. 3711–3717 (2018)

  41. Zhu, J., Jiang, W., Liu, A., Liu, G., Zhao, L.: Effective and efficient trajectory outlier detection based on time-dependent popular route. World Wide Web 20(1), 111–134 (2017)

    Article  Google Scholar 

  42. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants 61822113, the Natural Science Foundation of Hubei Province under Grants 2018CFA050.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Du or Shirui Pan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Trust, Privacy, and Security in Crowdsourcing Computing

Guest Editors: An Liu, Guanfeng Liu, Mehmet A. Orgun, and Qing Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, G., Du, B., Pan, S. et al. Adaptive knowledge subgraph ensemble for robust and trustworthy knowledge graph completion. World Wide Web 23, 471–490 (2020). https://doi.org/10.1007/s11280-019-00711-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00711-y

Keywords

Navigation