Skip to main content
Log in

Glider: rethinking congestion control with deep reinforcement learning

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Traditional congestion control protocols may fail to achieve consistently-high performance over a wide range of networking environments as their hardwired policies are optimized over specific network conditions. In this paper, we depart from conventional wisdom and propose Glider, a new congestion control protocol that uses deep reinforcement learning to be more versatile and adaptive to dynamic environments. In particular, Glider uses a framework based on Deep Q-Network, that a sender keeps adapting its congestion control strategies by continuously interacting with the network environment. In addition, the sender constantly sends data, making it challenging to apply reinforcement learning algorithms that require step-by-step state computation to congestion control. Therefore, we design a Dynamic Bisection Division Algorithm (DBDA) to discretize the packet transmission process into steps to ensure Glider’s feasibility on congestion control. We have used an extensive array of experiments on Pantheon to show that Glider can adapt well to varying buffer sizes and is resilient to random loss. Moreover, on wide-area inter-data center links, it can achieve 6.4\(\times\) and 1.4\(\times\) higher throughput than TCP CUBIC and BBR, respectively, and comparable performance as other learning-based congestion control protocols in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amiranashvili, A., Dosovitskiy, A., Koltun, V., Brox, T.: Td or not td: Analyzing the role of temporal differencing in deep reinforcement learning. arXiv:1806.01175 (2018)

  2. Appenzeller, G., Keslassy, I., McKeown, N.: Sizing router buffers. ACM SIGCOMM Comput. Commun. Rev. 34(4), 281–292 (2004)

  3. Arun, V., Balakrishnan, H.: Copa: Practical delay-based congestion control for the internet. In: Proc. USENIX Symposium on Networked Systems Design and Implementation, pp. 329–342 (2018)

  4. Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: Tcp vegas : new techniques for congestion detection and avoidance. ACM SIGCOMM Computer Communication Review 24(4), 24–35 (1994)

    Article  Google Scholar 

  5. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI Gym. arXiv:1606.01540 (2016)

  6. Cai, T., Li, J., Mian, A.S., Sellis, T., Yu, J.X., et al.: Target-aware holistic influence maximization in spatial social networks. IEEE Transactions on Knowledge and Data Engineering (2020)

  7. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: Congestion-based congestion control. Communications of the ACM 60, 58–66 (2017)

    Article  Google Scholar 

  8. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Annals of Operations Research 134(1), 19–67 (2005)

    Article  MATH  Google Scholar 

  9. Dong, M., Li, Q., Zarchy, D., Godfrey, P.B., Schapira, M.: PCC: re-architecting congestion control for consistent high performance. In: Proc. USENIX Symposium on Networked Systems Design and Implementation, pp. 395–408 (2015)

  10. Dong, M., Meng, T., Zarchy, D., Arslan, E., Gilad, Y., Godfrey, B., Schapira, M.: PCC Vivace: Online-learning congestion control. In: Proc. USENIX Symposium on Networked Systems Design and Implementation, pp. 343–356 (2018)

  11. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from twitter. Health Information Science and Systems 7(1), 1–7 (2019)

    Article  Google Scholar 

  12. Fall, K.R., Stevens, W.R.: TCP/IP Illustrated, volume 1: the protocols. Addison-Wesley (2011)

  13. Gettys, J.: Bufferbloat: dark buffers in the internet. IEEE Internet Computing (3) (2011)

  14. Guadarrama, S., et al.: TF-Agents: A library for reinforcement learning in TensorFlow. https://github.comtensorflow/agents (2018). Accessed 22 Aug 2018

  15. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems Review 42(5), 64–74 (2008)

    Article  Google Scholar 

  16. Haldar, N.A.H., Reynolds, M., Shao, Q., Paris, C., Li, J., Chen, Y.: Activity location inference of users based on social relationship. World Wide Web pp. 1–19 (2021)

  17. Jay, N., Rotman, N., Godfrey, B., Schapira, M., Tamar, A.: A deep reinforcement learning perspective on internet congestion control. In: Proc. the 36th international conference on machine learning, pp. 3050–3059 (2019)

  18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)

  19. Kong, Y., Zang, H., Ma, X.: Improving TCP congestion control with machine intelligence. In: Proc. 2018 ACM Workshop on Network Meets AI & ML, pp. 60–66 (2018)

  20. Li, J., Cai, T., Deng, K., Wang, X., Sellis, T., Xia, F.: Community-diversified influence maximization in social networks. Information Systems 92, 101,522 (2020)

  21. Li, W., Zhou, F., Chowdhury, K.R., Meleis, W.: QTCP: Adaptive congestion control with reinforcement learning. IEEE Transactions on Network Science and Engineering 6(3), 445–458 (2018)

    Article  Google Scholar 

  22. Li, Z., Wang, X., Li, J., Zhang, Q.: Deep attributed network representation learning of complex coupling and interaction. Knowledge-Based Systems 212, 106,618 (2021)

    Article  Google Scholar 

  23. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

  24. Netravali, R., Sivaraman, A., Das, S., Goyal, A., Winstein, K., Mickens, J., Balakrishnan, H.: Mahimahi: Accurate record-and-replay for HTTP. In: Proc. USENIX Annual Technical Conference, pp. 417–429 (2015)

  25. Ruffy, F., Przystupa, M., Beschastnikh, I.: Iroko: A framework to prototype reinforcement learning for data center traffic control. In: Proc. International Conference on Machine Learning (2018)

  26. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Information Science and Systems 8(1), 1–9 (2020)

    Article  Google Scholar 

  27. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv:1707.06347 (2017)

  28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press (2018)

  29. Szita, I., Lörincz, A.: Learning Tetris using the noisy cross-entropy method. Neural Computation 18(12), 2936–2941 (2006)

    Article  MATH  Google Scholar 

  30. Tan, L., Yuan, C., Zukerman, M.: FAST TCP: fairness and queuing issues. IEEE Communications Letters 9(8), 762–764 (2005)

    Article  Google Scholar 

  31. Winstein, K., Balakrishnan, H.: TCP ex Machina: Computer-generated congestion control. In: Proc. ACM SIGCOMM 2013 Conference, pp. 123–134 (2013)

  32. Wu, L., Yang, J., Zhou, M., Chen, Y., Wang, Q.: Lvid: A multimodal biometrics authentication system on smartphones. IEEE Transactions on Information Forensics and Security 15, 1572–1585 (2019)

    Article  Google Scholar 

  33. Xia, Z., Chen, Y., Wu, L., Chou, Y.C., Zheng, Z., Li, H., Li, B.: A multi-objective reinforcement learning perspective on internet congestion control. In: 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), pp. 1–10 (2021)

  34. Xia, Z., Wu, J., Wu, L., Yuan, J., Zhang, J., Li, J., Wu, D.: Rlcc: Practical learning-based congestion control for the internet. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

  35. Xia, Z., Xue, S., Wu, J., Chen, Y., Chen, J., Wu, L.: Deep reinforcement learning for smart city communication networks. IEEE Transactions on Industrial Informatics 17(6), 4188–4196 (2020)

    Article  Google Scholar 

  36. Xiao, L., Jiang, D., Chen, Y., Su, W., Tang, Y.: Reinforcement-learning-based relay mobility and power allocation for underwater sensor networks against jamming. IEEE Journal of Oceanic Engineering 45(3), 1148–1156 (2019)

    Article  Google Scholar 

  37. Xue, G., Zhong, M., Li, J., Chen, J., Zhai, C., Kong, R.: Dynamic network embedding survey. arXiv:2103.15447 (2021)

  38. Yan, F.Y., Ma, J., Hill, G.D., Raghavan, D., Wahby, R.S., Levis, P., Winstein, K.: Pantheon: the training ground for internet congestion-control research. In: Proc. USENIX Annual Technical Conference, pp. 731–743 (2018)

  39. Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y.: Vulnerability exploitation time prediction: an integrated framework for dynamic imbalanced learning. World Wide Web pp. 1–23 (2021)

  40. Yin, H., Yang, S., Song, X., Liu, W., Li, J.: Deep fusion of multimodal features for social media retweet time prediction. World Wide Web pp. 1–18 (2020)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U20A20177, 61772377,91746206), the Fundamental Research Funds for the Central Universities(2042020kf0217), and the Science and Technology planning project of Shenzhen(JCYJ202103243002197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libing Wu or Dan Wu.

Additional information

This article belongs to the Topical Collection: Special Issue on Decision Making in Heterogeneous Network Data Scenarios and Applications

Guest Editors: Jianxin Li, Chengfei Liu, Ziyu Guan, and Yinghui Wu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z., Wu, L., Wang, F. et al. Glider: rethinking congestion control with deep reinforcement learning. World Wide Web 26, 115–137 (2023). https://doi.org/10.1007/s11280-022-01018-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01018-1

Keywords

Navigation