Skip to main content
Log in

Multi-source and heterogeneous marine hydrometeorology spatio-temporal data analysis with machine learning: a survey

  • Research
  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

There is a new trend in marine hydrometeorology (MHM) that calls for novel solutions on massive multi-source and heterogeneous spatiotemporal data sets. Traditionally, the research and analysis of MHM objects are generally based on statistical analysis of observation data, numerical simulation, laboratory observation and experiments. However, these methods fail to adopt onto the massive multi-source and multi-modality data analysis problem. To better understand and analyze the new requirements on MHM data, researchers started a data-oriented approach that mines features and patterns from the massive datasets, or so called the machine learning approach. In this paper, we provide a systematic review on the applicability of machine learning approaches in understanding and mining MHM objects. We start with these techniques from the perspective of different data sources and focusing on learning objects like oceanic internal wave, tide, sea ice, typhoon, and red tide from recognition to prediction. First, this paper systematically summarizes the current research methodologies, unique data characteristics, and the challenges of machine learning in MHM. Next, we classify the mainstream data and models, and overview the machine learning models from the perspective of different MHM scenarios and multiple data sources. Then, we summarize the key techniques, with pros and cons of machine learning applications in processing such scenarios. Last, we conclude with the future research trend of machine learning in MHM, especially in model interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Not applicable

Code Availability

Not applicable

Notes

  1. https://osdds.nsoas.org.cn

References

  1. Xiao, D., Song, L., Wang, R., Han, X., Cai, Y., Shi, C.: Embedding geographic information for anomalous trajectory detection. World Wide Web 23(5), 2789–2809 (2020). https://doi.org/10.1007/s11280-020-00812-z

    Article  Google Scholar 

  2. Geng, Y., Du, J., Liang, M.: Abnormal event detection in tourism video based on salient spatio-temporal features and sparse combination learning. World Wide Web 22(2), 689–715 (2019). https://doi.org/10.1007/s11280-018-0603-0

    Article  Google Scholar 

  3. Kefalas, P., Symeonidis, P., Manolopoulos, Y.: Recommendations based on a heterogeneous spatio-temporal social network. World Wide Web 21(2), 345–371 (2018). https://doi.org/10.1007/s11280-017-0454-0

    Article  Google Scholar 

  4. Pouyanfar, S., Tao, Y., Tian, H., Chen, S. -C., Shyu, M. -L.: Multimodal deep learning based on multiple correspondence analysis for disaster management. World Wide Web 22(5), 1893–1911 (2019). https://doi.org/10.1007/s11280-018-0636-4

    Article  Google Scholar 

  5. Fang, J., Ding, J., Zhao, P., Xu, J., Liu, A., Li, Z.: Distributed and parallel processing for real-time and dynamic spatio-temporal graph. World Wide Web 23(2), 905–926 (2020). https://doi.org/10.1007/s11280-019-00741-6

    Article  Google Scholar 

  6. Wang, S., Cao, J., Yu, P.: Deep learning for spatio-temporal data mining: A survey. IEEE Transactions on Knowledge and Data Engineering, 1–1. https://doi.org/10.1109/TKDE.2020.3025580 (2020)

  7. Fu, G: Marine Meteorology (in Chinese). China Ocean University Press (2017)

  8. Feng, S., Li, F., Li, S.: Introduction To Ocean Science (in Chinese). Higher Education Press (1999)

  9. Huang, D., Zhou, G.: Oceanic Bigdata (in Chinese). Shanghai Scientific & Technical Publishers (2016)

  10. Favali, P., Beranzoli, L., De Santis, A.: Seafloor Observatories: A new vision of the earth from the abyss springer (2015)

  11. Huang, R., Zhou, Y., Ju, Y.: Meteorology and Bigdata (in Chinese). Science Press (2017)

  12. Shi, S., Liu, Y., Wei, H., Qiao, B., Wang, G., Xu, L.: Research on cloud computing and services framework of marine environmental information management. Acta Oceanol. Sin. 32(10), 57–66 (2013)

    Article  Google Scholar 

  13. Huang, D., Zhao, D., Wei, L., Wang, Z., Du, Y.: Modeling and analysis in marine big data: Advances and challenges. Math. Probl. Eng. 2015 (2015)

  14. Zhang, J., Xue, S., Huang, T.: Intelligent big data service for meteorological cloud platform. Int. J. Intell. Internet Things Comput. 1(1), 23–31 (2019)

    Article  Google Scholar 

  15. Wang, S., Cao, J., Yu, P.: Deep learning for spatio-temporal data mining: A survey. IEEE Trans. Knowl. Data Eng. (2020)

  16. Shi, J., ZHng, W.: Haiyang ShuZhi YuBao JiChu (in Chinese) China Ocean Press (2019)

  17. Huang, W., You, Y., Hu, T.: Wave-making experiments and theoretical models for internal solitary waves in a two-layer fluid of finite depth (in chinese). Acta Physica Sinica. https://doi.org/10.7498/aps.62.084705 (2013)

  18. Zhou, Z.: Machine Learning (in Chinese) Tsinghua University Press (2016)

  19. Han, P., Yang, P., Zhao, P., Shang, S., Liu, Y., Zhou, J., Gao, X., Kalnis, P.: Gcn-mf: Disease-gene association identification by graph convolutional networks and matrix factorization (2019)

  20. Han, P., Li, Z., Liu, Y., Zhao, P., Li, J., Wang, H., Shang, S.: Contextualized point-of-interest recommendation. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence. IJCAI’20 (2021)

  21. Han, P., Shang, S., Sun, A., Zhao, P., Zheng, K., Kalnis, P.: Auc-Mf: Point of interest recommendation with auc maximization. In: 2019 IEEE 35Th International Conference on Data Engineering (ICDE), pp. 1558–1561. https://doi.org/10.1109/ICDE.2019.00141 (2019)

  22. Han, P., Shang, S., Sun, A., Zhao, P., Zheng, K., Zhang, X.: Point-of-interest recommendation with global and local context. IEEE Trans. Knowl. Data Eng., 1–1. https://doi.org/10.1109/TKDE.2021.3059744 (2021)

  23. Han, P., Liu, G., Huang, S., Yuan, W., Lu, Z.: Segmentation with selectively propagated constraints. International Conference on Neural Information Processing, pp. 585–592 (2016). Springer

  24. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3d brain mri classification. In: 2017 IEEE 14Th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838. https://doi.org/10.1109/ISBI.2017.7950647 (2017)

  25. Jones, N.: How machine learning could help to improve climate forecasts. Nature 548(7668) (2017)

  26. OUC: The technical report of isolated wave remote sensing algorithm in south china sea (in chinese) (2017)

  27. Li, X., Liu, B., Zheng, G., Ren, Y., Zhang, S., Liu, Y., Gao, L., Liu, Y., Zhang, B., Wang, F.: Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 7(10), 1584–1605 (2020)

    Article  Google Scholar 

  28. Drees, L., Kusche, J., Roscher, R.: Multi-modal deep learning with sentinel-3 observations for the detection of oceanic internal waves. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 5(2) (2020)

  29. Bao, S., Meng, J., Sun, L., Liu, Y.: Detection of ocean internal waves based on faster r-cnn in sar images. J. Oceanol. Limnol. 38(1), 55–63 (2020)

    Article  Google Scholar 

  30. Celona, S., Merrifield, S. T., de Paolo, T., Kaslan, N., Cook, T., Terrill, E. J., Colosi, J. A.: Automated detection, classification, and tracking of internal wave signatures using x-band radar in the inner shelf. J. Atmos. Oceanic Tech. 38(4), 789–803 (2021)

    Article  Google Scholar 

  31. Ye, A., Li, F.: Wu Li Hai Yang Xue (in Chinese). China Ocean University Press (1992)

  32. Zhang, X., Li, X.: Combination of satellite observations and machine learning method for internal wave forecast in the sulu and celebes seas. IEEE Trans. Geosci. Remote Sens. 59(4), 2822–2832 (2020)

    Article  Google Scholar 

  33. Zhang, X., Li, X., Zheng, Q.: A machine-learning model for forecasting internal wave propagation in the andaman sea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 3095–3106 (2021)

    Article  Google Scholar 

  34. Pan, X., Wang, J., Zhang, X., Mei, Y., Shi, L., Zhong, G.: A deep-learning model for the amplitude inversion of internal waves based on optical remote-sensing images. Int. J. Remote Sens. 39(3), 607–618 (2018)

    Article  Google Scholar 

  35. Jing, N., Jing, W., Meng, Z., Hai-ji, C., Ke-xiao, L.: Amplitude inversion model and application of internal solitary waves of the northern south china sea based on optical remote-sensing images. Acta Photonica Sinica 48(12), 1228003 (2019)

    Article  Google Scholar 

  36. Zhang, X., Wang, H., Wang, S., Liu, Y., Yu, W., Wang, J., Xu, Q., Li, X.: Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model. Remote Sens. Environ. 272, 112940 (2022)

    Article  Google Scholar 

  37. Guo, Y., Zhang, J. P., Dai, R.: HangHai Xue (in Chinese). Dalian Maritime University Press (2015)

  38. Sarkar, D., Osborne, M., Adcock, T.: A machine learning approach to the prediction of tidal currents. In: The 26th International Ocean and Polar Engineering Conference. OnePetro (2016)

  39. Deo, M., Chaudhari, G.: Tide prediction using neural networks. Comput.-Aided Civ. Infrastruct. Eng. 13(2), 113–120 (1998)

    Article  Google Scholar 

  40. Lee, T. -L.: Back-propagation neural network for long-term tidal predictions. Ocean Eng. 31(2), 225–238 (2004)

    Article  Google Scholar 

  41. Tsai, C. -P., Lee, T. -L.: Back-propagation neural network in tidal-level forecasting. J. Waterw. Port Coastal, Ocean Eng. 125(4), 195–202 (1999)

    Article  Google Scholar 

  42. Lee, T., Jeng, D.: Application of artificial neural networks in tide-forecasting. Ocean Eng. 29(9), 1003–1022 (2002)

    Article  Google Scholar 

  43. Kavousi-Fard, A., Su, W.: A combined prognostic model based on machine learning for tidal current prediction. IEEE Trans. Geosci. Remote Sens. 55(6), 3108–3114 (2017)

    Article  Google Scholar 

  44. Kavousi-Fard, A.: Modeling uncertainty in tidal current forecast using prediction interval-based svr. IEEE Trans. Sustain. Energ. 8(2), 708–715 (2016)

    Article  Google Scholar 

  45. Okwuashi, O., Ndehedehe, C.: Tide modelling using support vector machine regression. J. Spat. Sci. 62(1), 29–46 (2017)

    Google Scholar 

  46. Chang, H. -K., Lin, L. -C.: Multi-point tidal prediction using artificial neural network with tide-generating forces. Coast. Eng. 53(10), 857–864 (2006)

    Article  Google Scholar 

  47. Liang, S., Li, M., Sun, Z.: Prediction models for tidal level including strong meteorologic effects using a neural network. Ocean Eng. 35(7), 666–675 (2008)

    Article  Google Scholar 

  48. Riazi, A.: Accurate tide level estimation: a deep learning approach. Ocean Eng. 107013, 198 (2020)

    Google Scholar 

  49. Granata, F., Di Nunno, F.: Artificial intelligence models for prediction of the tide level in venice. Stoch. Env. Res. Risk A. 35(12), 2537–2548 (2021)

    Article  Google Scholar 

  50. Yang, L., Jin, T., Gao, X., Wen, H., Schöne, T., Xiao, M., Huang, H.: Sea level fusion of satellite altimetry and tide gauge data by deep learning in the mediterranean sea. Remote Sens. 13(5), 908 (2021)

    Article  Google Scholar 

  51. Zakhvatkina, N., Smirnov, V., Bychkova, I.: Satellite sar data-based sea ice classification: an overview. Geosciences 9(4), 152 (2019)

    Article  Google Scholar 

  52. Kwok, R., Hara, Y., Atkins, R., Yueh, S., Shin, R., Kong, J.: Application of neural networks to sea ice classification using polarimetric sar images. In: Proceedings IGARSS’91 Remote Sensing: Global Monitoring for Earth Management, Vol. 1, Pp. 85–88 (1991)

  53. Karvonen, J. A.: Baltic sea ice sar segmentation and classification using modified pulse-coupled neural networks. IEEE Trans. Geosci. Remote Sens. 42(7), 1566–1574 (2004)

    Article  Google Scholar 

  54. Ressel, R., Singha, S., Lehner, S.: Neural network based automatic sea ice classification for Cl-Pol Risat-1 imagery. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Pp. 4835–4838 (2016)

  55. Ressel, R., Singha, S., Lehner, S., Rösel, A., Spreen, G.: Investigation into different polarimetric features for sea ice classification using x-band synthetic aperture radar. IEEE J-STARS 9(7), 3131–3143 (2016)

    Google Scholar 

  56. Huang, D., Li, M., Song, W., Wang, J.: Performance of convolutional neural network and deep belief network in sea ice-water classification using sar imagery (in chinese). J. Image Graph. 23, 1720–1732 (2018)

    Google Scholar 

  57. Cui, Y., Zou, B., Han, Z., Shi, L., Liu, S.: Application of convolutional neural networks in satellite remote sensing sea ice image classification: a case study of sea ice in the bohai sea (in chinese). Haiyang Xuebao 42(9), 100–109 (2020)

    Google Scholar 

  58. Ressel, R., Frost, A., Lehner, S.: A neural network-based classification for sea ice types on x-band sar images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(7), 3672–3680 (2015)

    Article  Google Scholar 

  59. Liu, H., Guo, H., Zhang, L.: Svm-based sea ice classification using textural features and concentration from radarsat-2 dual-pol scansar data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(4), 1601–1613 (2014)

    Article  Google Scholar 

  60. Bogdanov, A. V., Sandven, S., Johannessen, O. M., Alexandrov, V. Y., Bobylev, L. P.: Multisensor approach to automated classification of sea ice image data. IEEE Trans. Geosci. Remote Sens. 43(7), 1648–1664 (2005)

    Article  Google Scholar 

  61. Han, Y., Li, P., Zhang, Y., Hong, Z., Liu, K., Wang, J.: Combining active learning and transductive support vector machines for sea ice detection, vol. 12 (2018)

  62. Han, Y., Zhao, Y., Zhou, R.: Cooperative active learning and semi-supervised method for sea ice image classification (in chinese). Haiyang Xuebao 42 (1), 123–135 (2020)

    Google Scholar 

  63. Han, Y., Zhao, Y., Zhang, Y., Wang, J., Yang, S., Hong, Z., Cao, S.: A cooperative framework based on active and semi-supervised learning for sea ice classification using eo-1 hyperion data. T JPN SOC AERONAUT S 62 (6), 318–330 (2019)

    Article  Google Scholar 

  64. Lindsay, R., Zhang, J., Schweiger, A., Steele, M.: Seasonal predictions of ice extent in the arctic ocean. J. Geophys. Res. Oceans 113(C2) (2008)

  65. Yu, Z., Fei, X., Jin, J.: Bp neural network based nonlinear combination forecasting model for forecasting marine ice condition. Oper. Res. Manag. Sci. 15, 99–104 (2006)

    Google Scholar 

  66. Drobot, S. D., Maslanik, J. A., Fowler, C.: A long-range forecast of arctic summer sea-ice minimum extent. Geophys. Res. Lett. 33(10) (2006)

  67. Wang, L., Scott, K. A., Xu, L., Clausi, D. A.: Sea ice concentration estimation during melt from dual-pol sar scenes using deep convolutional neural networks: a case study. IEEE Trans. Geosci. Remote Sens. 54(8), 4524–4533 (2016)

    Article  Google Scholar 

  68. Wang, L., Scott, K. A., Clausi, D. A.: Sea ice concentration estimation during freeze-up from sar imagery using a convolutional neural network. Remote Sens. 9(5), 408 (2017)

    Article  Google Scholar 

  69. Wang, L., Scott, K.A., Clausi, D.A., Xu, Y.: Ice concentration estimation in the gulf of st. lawrence using fully convolutional neural network. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4991–4994. IEEE (2017)

  70. Petrou, Z.I., Tian, Y.: Prediction of sea ice motion with recurrent neural networks. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5422–5425. IEEE (2017)

  71. Petrou, Z. I., Tian, Y.: Prediction of sea ice motion with convolutional long short-term memory networks. IEEE Trans. Geosci. Remote Sens. 57(9), 6865–6876 (2019)

    Article  Google Scholar 

  72. Chi, J., Kim, H. -C.: Prediction of arctic sea ice concentration using a fully data driven deep neural network. Remote Sens. 9(12), 1305 (2017)

    Article  Google Scholar 

  73. Liu, Q., Zhang, R., Wang, Y., Yan, H., Hong, M.: Daily prediction of the arctic sea ice concentration using reanalysis data based on a convolutional lstm network. J. Marine Sci. Eng. 9(3), 330 (2021)

    Article  Google Scholar 

  74. Li, M., Zhang, R., Liu, K.: Machine learning incorporated with causal analysis for short-term prediction of sea ice frontiers in marine science (2021)

  75. Longsheng, L.: The Central Meteorological Station (in Chinese). http://www.nmc.cn/publish/typhoon/totalcyclone.htm Accessed April 4 (2021)

  76. China Meteorological data service centre, N.M.I.C.: The Central Meteorological Station (in Chinese). http://data.cma.cn/site/article/id/41115.html Accessed (2021)

  77. Ali, M., Kishtawal, C., Jain, S.: Predicting cyclone tracks in the north indian ocean: An artificial neural network approach. Geophys Res. Lett. 34(4) (2007)

  78. Wang, Y., Zhang, W., Fu, W.: Back propogation (bp)-neural network for tropical cyclone track forecast. In: 2011 19th International Conference on Geoinformatics, pp. 1–4. IEEE (2011)

  79. Kim, H. -S., Kim, J. -H., Ho, C. -H., Chu, P. -S.: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Climate 24(2), 488–508 (2011)

    Article  Google Scholar 

  80. Yang, F., Wu, G., Du, Y., Zhao, X.: Trajectory data mining via cluster analyses for tropical cyclones that affect the south China sea. ISPRS Int. J. Geo-Inf. 6(7), 210 (2017)

    Article  Google Scholar 

  81. Chu, H. -J., Liau, C. -J., Lin, C. -H., Su, B. -S.: Integration of fuzzy cluster analysis and kernel density estimation for tracking typhoon trajectories in the Taiwan region. Expert Syst. Appl. 39(10), 9451–9457 (2012)

    Article  Google Scholar 

  82. Loridan, T., Crompton, R. P., Dubossarsky, E.: A machine learning approach to modeling tropical cyclone wind field uncertainty. Mon. Weather. Rev. 145(8), 3203–3221 (2017)

    Article  Google Scholar 

  83. Kozar, M. E., Misra, V., Powell, M. D.: Hindcasts of integrated kinetic energy in atlantic tropical cyclones: a neural network prediction scheme. Mon. Weather. Rev. 144(12), 4591–4603 (2016)

    Article  Google Scholar 

  84. Kim, S., Kim, H., Lee, J., Yoon, S., Kahou, S.E., Kashinath, K., Prabhat, M.: Deep-hurricane-tracker: Tracking and forecasting extreme climate events. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1761–1769. IEEE (2019)

  85. Kim, S., Kim, H., Lee, J., Yoon, S., Kahou, S. E., Kashinath, K., Prabhat, M.: Deep-hurricane-tracker: Tracking and forecasting extreme climate events. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1761–1769. IEEE (2019)

  86. Alemany, S., Beltran, J., Perez, A., Ganzfried, S.: Predicting hurricane trajectories using a recurrent neural network. Proc. Conf. AAAI Artif. Intell. 33 (01), 468–475 (2019)

  87. Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23 (3), 375–396 (2019)

    Article  Google Scholar 

  88. Kovordányi, R., Roy, C.: Cyclone track forecasting based on satellite images using artificial neural networks. ISPRS J. Photogramm. Remote. Sens. 64(6), 513–521 (2009)

    Article  Google Scholar 

  89. Xu, J.-W., Wang, P., Xie, Y.-Y.: Image segmentation of typhoon spiral cloud bands based on support vector machine. In: 2009 International conference on machine learning and cybernetics, vol. 2, pp. 1088–1093. IEEE (2009)

  90. Zhang, C. -J., Luo, Q.: Tropical cyclones objection detection based on faster r-cnn and infrared satellite cloud images. In: 2018 International conference on image and video processing, and artificial intelligence. vol. 10836, p. 108360. International Society for Optics and Photonics (2018)

  91. Li, H., Yu, X., Ren, P.: Typhoon cloud prediction via generative adversarial networks. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 3023–3026. IEEE (2018)

  92. Shoemaker, D. N., Gray, W. M., Sheaffer, J. D.: Influence of synoptic track aircraft reconnaissance on jtwc tropical cyclone track forecast errors. Weather and forecasting 5(3), 503–507 (1990)

    Article  Google Scholar 

  93. Baik, J. -J., Paek, J. -S.: A neural network model for predicting typhoon intensity. J. Meteorol. Soc. Japan. Ser. II 78(6), 857–869 (2000)

    Article  Google Scholar 

  94. Rüttgers, Y. D., Lee, S: Typhoon track prediction using satellite images in a generative adversarial network. arXiv:1808.05382v1 [physics.ao-ph] (2018)

  95. Rüttgers, M., Lee, S., You, D.: Prediction of typhoon tracks using a generative adversarial network with observational and meteorological data. arXiv:1812.01943 (2018)

  96. Giffard-Roisin, S., Yang, M., Charpiat, G., Kégl, B., Monteleoni, C.: Fused deep learning for hurricane track forecast from reanalysis data (2018)

  97. Recknagel, F.: Anna–artificial neural network model for predicting species abundance and succession of blue-green algae. Hydrobiologia 349(1), 47–57 (1997)

    Article  Google Scholar 

  98. Recknagel, F., French, M., Harkonen, P., Yabunaka, K. -I.: Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model. 96(1-3), 11–28 (1997)

    Article  Google Scholar 

  99. French, M., Recknagel, F., Jarrett, G.L.: Scaling issues in artificial neural network modeling and forecasting of algal bloom dynamics. Water Res. Eng.’98, 891–896. ASCE (1998)

  100. Recknagel, F., Fukushima, T., Hanazato, T., Takamura, N., Wilson, H.: Modelling and prediction of phyto-and zooplankton dynamics in lake kasumigaura by artificial neural networks. Lakes & Reserv.: Res. Manag. 3(2), 123–133 (1998)

    Article  Google Scholar 

  101. Lee, J. H., Huang, Y., Dickman, M., Jayawardena, A. W.: Neural network modelling of coastal algal blooms. Ecol. Model. 159(2-3), 179–201 (2003)

    Article  Google Scholar 

  102. Wilson, H., Recknagel, F.: Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes. Ecol. Model. 146(1-3), 69–84 (2001)

    Article  Google Scholar 

  103. Gu, S. -M., Sun, X. -H., Wu, Y. -H., Cui, Z. -D.: An approach to forecast red tide using generalized regression neural network (2012)

  104. Ma, Y., Gao, J., Wang, Q.: Forecast model for red tide on artificial neural network(in chinese). Marine Forecasts 24(1), 38–44 (2007)

    Google Scholar 

  105. Zhang, C., Qian, Z., Sun, W., JI, P., HU, J.: Lmbp neural network combination forecast model for red tide based on iowa operators (in chinese with english abstract). J. Tianjin Univ. 44(2), 101–106 (2011)

    Google Scholar 

  106. Qin, M., Li, Z., Du, Z.: Red tide time series forecasting by combining arima and deep belief network. Knowl.-Based Syst. 125, 39–52 (2017)

    Article  Google Scholar 

  107. Feng, J. -F., Wang, H., Li, S. -P.: Research on prediction of phytoplankton’s density using support vector machines (in chinese with english abstract). Mar. Environ. Sci. 26(5), 438–441 (2007)

    Google Scholar 

  108. Nagamori, E., Honda, H., Hanai, T., Nakanishi, K., Hata, N., Masuda, T., Kobayashi, T.: Prediction of occurrence of heterocapsa circularisquama red tide by means of fuzzy neural network. J. Chem. Eng. Japan 34(8), 998–1005 (2001)

    Article  Google Scholar 

  109. Wang, H., Ge, G., Li, Y.: Research on the prediction of red tide based on the fuzzy neural network. Mar. Sci. Bull. 25(4), 36–41 (2006)

    Google Scholar 

  110. Gao, Q., Song, Y., Du, Z.: Information fusion technology based on t-s fuzzy neural networks for red tide prediction (in chinese with english abstract). Ocean technology/Haiyang Jishu 25(2), 103–106 (2006)

    Google Scholar 

  111. Fdez-Riverola, F., Corchado, J. M.: Fsfrt: Forecasting system for red tides. a hybrid autonomous ai model. Appl. Artif. Intell. 17(10), 955–982 (2003)

    Article  Google Scholar 

  112. Lou, X. -L., Huang, W. -G.: An artificial neural network method for detecting red tides with noaa avhrr imagery(in chinese). J. Remote Sens.-beijing- 7(2), 125–130 (2003)

    Google Scholar 

  113. Huang, W., Lou, X.: Avhrr detection of red tides with neural networks. Int. J. Remote Sens. 24(10), 1991–1996 (2003)

    Article  Google Scholar 

  114. Jiang, Z., Ma, Y., Jiang, T., Chen, C.: Research on the extraction of red tide hyperspectral remote sensing based on the deep belief network (dbn) (in chinese). J. Ocean Technol. 38(2), 1–7 (2019)

    Google Scholar 

  115. Yabin, H., Yi, M., Jubai, A.: Research on high accuracy detection of red tide hyperspecrral based on deep learning cnn. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 42, 3 (2018)

    Google Scholar 

  116. Lee, M. -S., Park, K. -A., Chae, J., Park, J. -E., Lee, J. -S., Lee, J. -H.: Red tide detection using deep learning and high-spatial resolution optical satellite imagery. Int. J. Remote Sens. 41(15), 5838–5860 (2020)

    Article  Google Scholar 

  117. Kim, S. M., Shin, J., Baek, S., Ryu, J. -H.: U-net convolutional neural network model for deep red tide learning using goci. J. Coast. Res. 90 (SI), 302–309 (2019)

    Article  Google Scholar 

  118. Ribeiro, M. T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the predictions of any classifier, 1135–1144 (2016)

  119. May Petry, L., Soares, A., Bogorny, V., Brandoli, B., Matwin, S.: Challenges in vessel behavior and anomaly detection: From classical machine learning to deep learning. In: Canadian Conference on Artificial Intelligence, pp. 401–407. Springer (2020)

  120. Lee, Y. -J., Hall, D., Liu, Q., Liao, W. -W., Huang, M. -C.: Interpretable tropical cyclone intensity estimation using dvorak-inspired machine learning techniques. Eng. Appl. Artif. Intell. 104233, 101 (2021)

    Google Scholar 

  121. Gibson, P. B., Chapman, W. E., Altinok, A., Delle Monache, L., DeFlorio, M. J., Waliser, D. E.: Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts. Commun. Earth & Environ. 2(1), 1–13 (2021)

    Article  Google Scholar 

  122. McGovern, A., Lagerquist, R., Gagne, D. J., Jergensen, G. E., Elmore, K. L., Homeyer, C. R., Smith, T.: Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Am. Meteorol. Soc. 100(11), 2175–2199 (2019)

    Article  Google Scholar 

  123. Ebert-Uphoff, I., Hilburn, K.: Evaluation, tuning, and interpretation of neural networks for working with images in meteorological applications. Bull. Am. Meteorol. Soc. 101(12), 2149–2170 (2020)

    Article  Google Scholar 

  124. Bonavita, M., Arcucci, R., Carrassi, A., Dueben, P., Geer, A. J., Le Saux, B., Longépé, N., Mathieu, P. -P., Raynaud, L.: Machine learning for earth system observation and prediction. Bull. Am. Meteorol. Soc. 102 (4), 710–716 (2021)

    Article  Google Scholar 

  125. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B., Pfrommer, J., Pick, A., Ramamurthy, R., et al.: Informed machine learning–a taxonomy and survey of integrating knowledge into learning systems. arXiv:1903.12394 (2019)

  126. Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nature Rev. Phys. 3 (6), 422–440 (2021)

    Article  Google Scholar 

  127. Ahmad, M. A., Özönder, Ş.: Physics inspired models in artificial intelligence, 3535–3536 (2020)

  128. Cooke, C. L., Kong, F., Chaware, A., Zhou, K. C., Kim, K., Xu, R., Ando, D. M., Yang, S. J., Konda, P. C., Horstmeyer, R.: Physics-enhanced machine learning for virtual fluorescence microscopy, 3803–3813 (2021)

  129. Daw, A., Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural networks (pgnn): An application in lake temperature modeling. arXiv:1710.11431 (2017)

  130. Jia, X., Willard, J., Karpatne, A., Read, J. S., Zwart, J. A., Steinbach, M., Kumar, V.: Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles. ACM/IMS Trans. Data Sci. 2(3), 1–26 (2021)

    Article  Google Scholar 

  131. Daw, A., Thomas, R. Q., Carey, C. C., Read, J. S., Appling, A. P., Karpatne, A.: Physics-guided architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling. In: Proceedings of the 2020 Siam International Conference on Data Mining, pp. 532–540. SIAM (2020)

  132. Jia, X., Zwart, J., Sadler, J., Appling, A., Oliver, S., Markstrom, S., Willard, J., Xu, S., Steinbach, M., Read, J., et al: Physics-guided recurrent graph model for predicting flow and temperature in river networks. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 612–620. SIAM (2021)

  133. Jia, X., Xie, Y., Li, S., Chen, S., Zwart, J., Sadler, J., Appling, A., Oliver, S., Read, J.: Physics-guided machine learning from simulation data: An application in modeling lake and river systems. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 270–279. IEEE (2021)

  134. Willard, J.D., Read, J.S., Appling, A.P., Oliver, S.K., Jia, X., Kumar, V.: Predicting water temperature dynamics of unmonitored lakes with meta-transfer learning, vol. 57 (2021)

  135. Svendsen, D. H., Piles, M., Muñoz-marí, J., Luengo, D., Martino, L., Camps-Valls, G.: Integrating domain knowledge in data-driven earth observation with process convolutions. IEEE Trans. Geosci. Remote Sens 60, 1–15 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB0203801), and the National Natural Science Foundation of China (Grant Nos. 62032019, 61572510, 61702529, 61502511), and China National Special Fund for Public Welfare (Grant No. GYHY201306003).

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB0203801), and the National Natural Science Foundation of China (Grant Nos. 62032019, 61572510, 61702529, 61502511), and China National Special Fund for Public Welfare (Grant No. GYHY201306003).

Author information

Authors and Affiliations

Authors

Contributions

Author Song Wu is responsible for literature collection and writing. Author Xiaoyong Li and Wei Dong are responsible for writing ideas and revising the paper. Author Senzhang Wang, Xiaojiang Zhang, Zichen Xu are responsible for giving guidance and revising the paper. All authors reviewed the manuscript and agreed with the content.

Corresponding author

Correspondence to Xiaoyong Li.

Ethics declarations

Human and Animal Ethics

Not applicable

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable

Consent for Publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Li, X., Dong, W. et al. Multi-source and heterogeneous marine hydrometeorology spatio-temporal data analysis with machine learning: a survey. World Wide Web 26, 1115–1156 (2023). https://doi.org/10.1007/s11280-022-01069-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01069-4

Keywords

Navigation