Skip to main content
Log in

Control of truck-trailer mobile robots: a survey

  • Review Article
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Mobile robots with trailers and its control is one of the most challenging problems in service robotics. Since, these kinds of robots can accomplish the given task in a faster and cheaper way than an individual robot, they find applications in many areas. However, the backward movement of a truck-trailer mobile robot is more complex as the complete system is highly non-linear and unstable. The practical advantages of this system in the transportation industry have led to significant research in this area. Various studies have been conducted in this area for exploring more on the subject of non-linear control. This paper presents a survey on the various control strategies developed in the backward motion of mobile robot with trailers. The existing studies in this field are analyzed to identify unsolved problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sampei M, Tamura T, Itoh T, Nakamichi M (1991) Path tracking control of trailer-like mobile robot. In: Proceedings IROS ’91and IEEE/RSJ International Workshop on Intelligent Robots and Systems- Intelligence for Mechanical Systems, vol 1, pp 193–198

  2. Stergiopoulos J, Manesis S (2009) Anti-jack-knife state feedback control law for non-holonomic vehicles with trailer sliding mechanism. Int J Syst Control Commun 1(3):297–311

    Article  Google Scholar 

  3. Kim DH, Oh JH (1999) Experiments of backward tracking control for trailer system. Proc IEEE Int Conf Robot Autom 1:19–22

    Google Scholar 

  4. Sordalen OJ (1993) Conversion of the kinematics of a car with n trailers into a chained form. Proc IEEE Int Conf Robot Autom 1:382–387

    Article  Google Scholar 

  5. Tilbury D, Sastry S (1995) The multi-steering N-trailer system: a case study of Goursat normal forms and prolongations. Int J Robust Non-linear Control 5(4):343–364

    Article  MathSciNet  MATH  Google Scholar 

  6. DeSantis R (1994) Path tracking for a tractor-trailer like robot. Int J Robot Res 13:533–543

    Article  Google Scholar 

  7. LaVelle SM (2006) Planning algorithms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Michalek M (2012) Tracking control strategy for the standard N-trailer mobile robot: geometrically motivated approach. Robot Motion and Control 2011. Lecture Notes in Control and Information Sciences, vol 422, pp 39–51

  9. Bushnell LG (1995) An obstacle avoidance algorithm for a car pulling trailers with offaxle hitching. In: Proceedings of the 34th IEEE Conference on Decision and Control, vol 4, pp 3837–3842

  10. Martinez JL, Paz M, Garcia-Cerezo A (2002) Path tracking for mobile robots with a trailer. In: Proceedings of the 15th IFAC World Congress, vol 15, pp 865–865

  11. Petrov P (1998) Hybrid stabilization of a car trailer via chained form and integrator stepping, control. Proc UKACC Int Conf 2(455):1192–1197

    Google Scholar 

  12. Ji-Chul R, Agrawal SK (2008) JaumeFranch, motion planning and control of a tractor with a steerable trailer using differential flatness, ASME transactions. J Comput Non-linear Dyn 3(3): 031003

    Article  Google Scholar 

  13. Yuan J, Huang Y, Sun F, Kang Y (2004) Computation of equivalent size for tractor-trailer wheeled mobile robot. Fifth World Congress on Intelligent Control and Automation, WCICA, vol 6, pp 4788–4792

  14. Astolfi A, Bolzern P, Locatelli A (2004) Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths: a Lyapunov-based approach. IEEE Trans Robot Autom 20(1):154–160

    Article  Google Scholar 

  15. Morbidi F, Prattichizzo D (2007) Sliding mode formation tracking control of a tractor and trailer: car system, robotics: science and systems. The MIT Press, Cambridge

    Google Scholar 

  16. Cheng J, Zhang Y, Wang Z (2009) Backward tracking of mobile robot with one trailer via fuzzy line-of-sight method. In: Proceedings of 6\(^{{\rm th}}\) International Conference on Fuzzy Systems and Knowledge Discovery, FSKD, vol 4, pp 66–70

  17. Lee JH, Chung W, Kim M, Song B (2004) A passive multiple trailer system with off-axle hitching, and systems. Int J Control Autom 2:289–297

    Google Scholar 

  18. Ng TC, Guzman JI, Adams MD (2005) Autonomous vehicle-following systems: a virtual trailer link model. IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug 2005, pp 3057–3062

  19. Hao Y, Agarwal SK (2004) Formation planning and control of UGVs with trailer. Auton Robot 19:257–270

    Article  Google Scholar 

  20. Altafini C, Speranzon A (2001) Backward line tracking control of a radio-controlled truck and trailer. Proc IEEE Int Conf Robot Autom 1:169–174

    Google Scholar 

  21. Svestka P, Vleugels J (1995) Exact motion planning for tractor-trailer robots. Proc IEEE Int Conf Robot Autom 3:2445–2450

    Google Scholar 

  22. Petrov P (2010) Non-linear backward tracking control of an articulated mobile robot with off-axle hitching. In: Proceedings of the \(9^{{\rm th}}\) WSEAS International conference on Signal Processing, Robotics and Automation, Wisconsin, pp 269–273

  23. Zhen-Ying L, Chao-Li W (2011) Robust stabilization of non-holonomic chained form systems with uncertainties. Acta Automatica Sinica 37(2):129–142

    MathSciNet  Google Scholar 

  24. Saeki M (2002) Path following control of articulated vehicle by backward driving. Proce Int Conf Control Appl 1:421–426

    Google Scholar 

  25. Matsushita K, Murakami T (2006) Backward motion control for articulated vehicles with double trailers considering driver’s input. In: 32nd Annual Conference on IEEE Industrial Electronics, IECON 2006, Nov 2006, pp 3052–3057

  26. Barraquand J, Latombe J-C (1989) On non-holonomic mobile robots and optimal maneuvering. In: Proceedings of IEEE International Symposium on Intelligent, Control, pp 340–347

  27. Laumond J-P, Taix M, Jacobs P (1990) A motion planner for car-like robots based on a mixed global/local approach. In: Proceedings of IEEE International Workshop on Intelligent Robots and Systems- Towards a New Frontier of Applications, vol 2, pp 765–773

  28. Murray RM, Sastry SS (1990) Steering non-holonomic systems using sinusoids. In: Proceedings of the 29th IEEE Conference on Decision and Control, vol 4, pp 2097–2101

  29. Tilbury D, Laumond J-P, Murray R, Sastry S, Walsh G (1992) Steering car-like systems with trailers using sinusoids. Proc IEEE Int Conf Robot Autom 3:1993–1998

    Google Scholar 

  30. Laumond J-P (1993) Controllability of a multibody mobile robot. Proc IEEE Int Conf Robot Autom 9(6):755–763

    Article  Google Scholar 

  31. Gonzalez-Cantos A, Maza JI, Ollero A (2001) Design of a stable backing up fuzzy control of autonomous articulated vehicles for factory automation. In: Proceedings of 8th IEEE International Conference on Emerging Technologies and Factory Automation, vol 1, pp 447–451

  32. Rouchon P, Fliess M, Levine J, Martin P (1993) Flatness, motion planning and trailer systems. In: Proceedings of the 32nd IEEE Conference on Decision and Control, vol 3, pp 2700–2705

  33. Nakamura M, Yuta S (1993) Trajectory control of trailer type mobile robots. Proc IEEE/RSJ Int Conf Intell Robot Syst 3:2257–2263

    Google Scholar 

  34. Tilbury D, Murray RM (1995) Trajectory generation for the N-trailer problem using Goursat normal form. Proc IEEE Trans Autom Control 40(5):802–819

    Article  MathSciNet  MATH  Google Scholar 

  35. Laumond J-P, Jacobs PE, Taix M, Murray RM (1994) A motion planner for non-holonomic mobile robots. Proc IEEE Trans Robot Autom 10(5):577–593

    Article  Google Scholar 

  36. Samson C (1995) Control of chained systems application to path following and time-varying point-stabilization of mobile robots. Proc IEEE Trans Autom Control 40(1):64–77

    Article  MathSciNet  MATH  Google Scholar 

  37. Tanaka K, Yoshioka K (1995) Fuzzy trajectory control and GA-based obstacle avoidance of a truck with five trailers. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Intelligent Systems for the 21st Century, vol 5, pp 4378–4382

  38. Hougen DF, Gini M, Slagle J (1997) Rapid unsupervised connectionist learning for backing a robot with two trailers. Proc IEEE Int Conf Robot Autom 4:2950–2955

    Article  Google Scholar 

  39. Lamiraux F, Laumond J-P (1998) A practical approach to feedback control for a mobile robot with trailer. Proc IEEE Int Conf Robot Autom 4:3291–3296

    Article  Google Scholar 

  40. Tanaka K, Kosaki T, Wang HO (1998) Backing control problem of a mobile robot with multiple trailers: fuzzy modeling and LMI-based design. Proc IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):329–337

    Article  Google Scholar 

  41. Jiang ZP, Nijmeijer H (1999) A recursive technique for tracking control of non-holonomic systems in chained form. Proc IEEE Trans Autom Control 44(2):265–279

    Article  MathSciNet  MATH  Google Scholar 

  42. Jiang K, Seneviratne LD (1999) A sensor guided autonomous parking system for non-holonomic mobile robots. Proc IEEE Int Conf Robot Autom 1:311–316

    Google Scholar 

  43. Dudek G, Jenkin M (2010) Computational principles of mobile robotics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  44. Li W, Tsubouchi T, Yuta S (2000) Manipulative difficulty index of a mobile robot with multiple trailers in pushing and towing with imperfect measurement. Proce IEEE Int Conf Robot Autom 3:2264–2269

    Google Scholar 

  45. Lamiraux F, Sekhavat S, Laumond J-P (1999) Motion planning and control for Hilare pulling a trailer. Proc IEEE Tran Robot Autom 15(4):640–652

    Article  Google Scholar 

  46. Nakamura Y, Ezaki H (2001) Design of steering mechanism and control of non-holonomic trailer systems. Proc IEEE Tran Robot Autom 17(3):367–374

    Article  Google Scholar 

  47. Fliess M, Levine J, Martin P, Rouchon P (1995) Flatness and defect of non-linear systems: introductory theory and examples. Int J Control 61(6):1327–1361

    Article  MathSciNet  MATH  Google Scholar 

  48. Lamiraux F, Laumond J-P (2000) Flatness and small-time controllability of multibody mobile robots: application to motion planning. Proc IEEE Trans Autom Control 45(10):1878– 1881

  49. Lee J, Chung W, Kim M, Lee C, Jeabok S (2001) A passive multiple trailer system for indoor service robots. Proc IEEE/RSJ Int Conf Intell Robot Syst 2:827–832

    Google Scholar 

  50. Li H, Que J, Huang Y (2002) Concept of equivalent size for tractor-trailer mobile robots and its application to path planning. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, vol 2, pp 1143–1147

  51. Lamiraux F, Bonnafous D (2002) Reactive trajectory deformation for non-holonomic systems: application to mobile robots. Proc IEEE Int Conf Robot Autom 3:3099–3104

    Google Scholar 

  52. Han Q, Huang Y, Yuan J, Kang Y (2004) A method of path planning for tractor-trailer mobile robot based on the concept of global-width. Fifth World Congress on Intelligent Control and Automation, WCICA, vol 6, pp 4773–4777

  53. Siegwart R, Noorbakhsh I, Scaramuzza D (2011) Introduction to autonomous mobile robots, intelligent robotics and autonomous agents series. The MIT Press, Cambridge

    Google Scholar 

  54. Park M, Chung W, Kim M, Song J (2004) Control of a mobile robot with passive multiple trailers. Proc IEEE Int Conf Robot Autom 5:4369–4374

    Google Scholar 

  55. Yuan J, Huang Y, Sun F (2004) Design for physical structure of tractor-trailer mobile robot. Proceedings of IEEE International Conference on Robotics and Biomimetics, Aug 2004, pp 511–516

  56. Cuesta F, Gomez-Bravo F, Ollero A (2004) Parking maneuvers of industrial-like electrical vehicles with and without trailer. Proc IEEE Trans Ind Electron 51(2):257–269

    Article  Google Scholar 

  57. Lamiraux F, Bonnafous D, Lefebvre O (2004) Reactive path deformation for non-holonomic mobile robots. Proc IEEE Trans Robot 20(6):967–977

    Article  Google Scholar 

  58. Martinez JL, Morales J, Mandow A, Garcia-Cerezo A (2008) Steering limitations for a vehicle pulling passive trailers. Proc IEEE Trans Control Syst Technol 16(4):809–818

    Article  Google Scholar 

  59. Roh J, Chung W (2010) Reversing control of a car with a trailer using a Driver Assistance System. In: Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts ARSO, Oct 2010, pp 99–104

  60. Altafini C, Speranzon A, Johansson KH (2002) Hybrid control of a truck and trailer vehicle. Hybrid systems: computation and control, Lecture Notes in Computer Science, vol 2289. Springer-Verlag, London, pp 21–34

    Google Scholar 

  61. Sekhavat S, Lamiraux F, Laumond JP, Bauzil G, Ferrand A (1999) Motion planning and control for Hillare pulling a trailer: experimental issues. Proc IEEE Trans Robot Autom 15(4):3306–3311

    Google Scholar 

  62. Sordalen OJ, Wichlund KY (1993) Exponential stabilization of a car with n trailers. In: Proceedings of the 32nd IEEE Conference on Decision and Control, vol 2, pp 978–983

  63. Kong S-G, Kosko B (1992) Adaptive fuzzy systems for backing up a truck-and-trailer. Proc IEEE Trans Neural Netw 3(2):211–223

    Article  Google Scholar 

  64. Shelton RO, Peterson JK (1992) Controlling a truck with an adaptive critic CMAC design. Simulation 58:319–326

    Article  Google Scholar 

  65. Hougen DF, Fischer J, Gini M, Slagle J (1996) Fast connectionist learning for trailer backing using a real robot. Proc IEEE Int Conf Robot Autom 2:1917–1922

    Article  Google Scholar 

  66. Hougen DF, Fischer J, Gini M, Slagle J (1997) Rapid unsupervised connectionist learning for backing a robot with two trailers. Proc IEEE Int Conf Robot Autom 4:2950–2955

    Article  Google Scholar 

  67. Brockett RW (1982) Control theory and singular Riemannian geometry. In: New directions in applied mathematics. Springer-Verlag, New-York, pp 11–27

  68. Laumond JP, Simeon T (1989) Motion planning for a two degrees of freedom mobile robot with towing. LAAS/CNRS Report 89148, Tolouse, April 1989

  69. Laumond JP (1987) Finding collision-free smooth trajectories for a non-holonomic mobile robot. In: Proceedings of the 10th International Joint Conference on Artificial Intelligence, vol 2, pp 1120–1123

  70. Laumond JP (1987) Feasible trajectories for mobile robots with kinematic and environment constraints. In: Proceedings on Intelligent Autonomous Systems, pp 346–354

  71. Pomet JB, Samson C (1993) Time-varying exponential stabilization of non-holonomic systems in power form. INRIA Tech Rep 2126, Dec 1993

  72. Teel AR, Murray RM, Walsh G (1992) Non-holonomic control systems: from steering to stabilization with sinusoids. In: Proceedings of the 31st IEEE Conference on Decision and Control, vol 2, pp 1603–1609

  73. Woojin C (2004) Non-holonomic manipulators, springer tracts in advanced robotics. Springer Publications, New York

    Google Scholar 

  74. Hingwe P, Tan HS, Packard AK, Tomizuka M (2002) Linear parameter varying controller for automated lane guidance: experimental study on tractor-trailers. Proc IEEE Trans Control Syst Technol 10(6):793–806

    Article  Google Scholar 

  75. Petrov P, Tetreault M, De Lafontaine J (1999) Path control during backward driving of a tractor-trailer with off-axle hitching. In: Proceedings of International Conference on Advanced Robotics, pp 571–576

  76. Matsushita K, Murakami T (2005) Non-holonomic equivalent disturbance based backward motion control of tractor-trailer with virtual steering. In: 31st Annual Conference of IEEE Industrial Electronics Society, Nov 2005, pp 6–15

  77. Pradalier C, Usher K (2007) A simple and efficient control scheme to reverse a tractor-trailer system on a trajectory. In: Proceedings of IEEE International Conference on Robotics and Automation, April 2007, pp 2208–2214

  78. Nguyen D, Widrow B (1989) The truck backer-upper: an example of self-learning in neural networks. Int Joint Conf Neural Netw 2:357–363

    Article  Google Scholar 

  79. Tokunaga M, Ichihashi H (1992) Backer-upper control of a trailer truck by neuro-fuzzy optimal control. In: Proceedings of 8th Fuzzy System Symposium, pp 49–52

  80. Tanaka K, Sano M (1994) Stabilization of backing up control system of a truck trailer by model based fuzzy control. Fuzzy Syst IEEE Trans 2(2):119–134

    Article  Google Scholar 

  81. Tanaka K, Sano M (1994) A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer. Proc IEEE Trans Fuzzy Syst 2(2):119–134

    Article  Google Scholar 

  82. Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms and implementations, intelligent robotics and autonomous agents series. The MIT Press, Cambridge

    Google Scholar 

  83. Altafini C, Speranzon A, Wahlberg B (2001) A feedback control scheme for reversing a truck and trailer vehicle. Proc IEEE Trans Robot Autom 17(6):915–922

    Article  Google Scholar 

  84. Sampei M, Tamura T, Kobayashi T, Shibui N (1995) Arbitrary path tracking control of articulated vehicles using non-linear control theory. Proc IEEE Trans Control Syst Technol 3(1):125–131

    Article  Google Scholar 

  85. Sampei M, Kobayashi T (1994) Path tracking control of car-caravan type articulated vehicles using non-linear control theory. Trans Soc Instrum Control Eng 30(4):427–434

    Google Scholar 

  86. Tanaka K, Taniguchi T, Wang HO (1999) Trajectory control of an articulated vehicle with triple trailers. Proc IEEE Int Conf Control Appl 2:1673–1678

    Google Scholar 

  87. Saeki M, Kobayashi T, Imura J, Kimura J (2001) Control system design for backward steering of a tractor-trailer vehicle. Trans Soc Instrum Control Eng 37(8):748–753

    Google Scholar 

  88. Paromtchik IE, Laugier C (1996) Autonomous Parallel parking of a non-holonomic vehicle. Proc IEEE Intell Veh Symp 13–18:1996

    Google Scholar 

  89. Divelbliss AW, Wen JT (1997) Trajectory tracking control of a car-trailer system. Proc IEEE Trans Control Syst Technol 5(3):269–278

    Article  Google Scholar 

  90. Miyata H, Okhi M, Ohkita M (1996) Self-tuning of fuzzy reasoning by the steepest descent method and its application to a parallel parking. IECIE Trans Inform Syst E 79D(5):561–569

    Google Scholar 

  91. Miyata H, Okhi M, Yokouchi Y, Okhita M (1996) Control of the autonomous mobile robot Dream-1 for a parallel parking. Math Comput Simul 41(1–2):129–138

    Article  Google Scholar 

  92. Gomez-Bravo F, Cuesta F, Ollero A (2001) Parallel and diagonal parking in non-holonomic autonomous vehicles. Eng Appl Intell 14(4):419–434

  93. Yamamoto M, Hayashi Y, Mohri A (2005) Garage parking planning and control of car-like robot using a real time optimization method. In: The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, July 2005, pp 248–253

  94. Novak D, Dovzan D, Grebensek R, Oblak S et al (2007) Automated parking of a truck and trailer. In: Proceedings of International Conference on Advances in Internet, Processing, Systems and Interdisciplinary Research

  95. Sharafi M, Zare A (2011) Intelligent Parking method for truck and trailer in presence of fixed and moving obstacles. Aust J Basic Appl Sci 5(11):398–416

    Google Scholar 

  96. Kim DH, Oh JH (1999) Non-linear tracking control of trailer systems using Lyapunov direct method. J Robot Syst 16(1):1–8

    Article  MATH  Google Scholar 

  97. Li H, Huang Y (2001) Analysis and description of band-path for tractor-trailer mobile robot. Robot 23(4):334–337

    Google Scholar 

  98. Nakamura Y, Ezaki H, Chung WJ (1999) Design of steering mechanism and control of non-holonomic trailer systems. J Robot Soc Jpn: 839–847

  99. Laumond JP (1998) Robot motion planning and control. Lecture notes in control and information sciences, vol 229. Springer Verlag, Berlin

    Google Scholar 

  100. Sekhavat S, Svetska P, Laumond JP, Overmars M (1998) Multi-level path planning for non-holonomic robots using semi-holonomic subsystems. Int J Robot Res 17(8):840–857

    Article  Google Scholar 

  101. Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17:760–772

    Article  Google Scholar 

  102. Large F, Sekhavat S, Shiller Z, Laugier C (2002) Towards real-time global motion planning in a dynamic environment using the NLVO concept. Proc Int Conf Intell Robot Syst 1:607–612

    Google Scholar 

  103. Hao Y, Agrawal SK (2005) Planning and control of UGV formations in a dynamic environment: a practical framework with experiments. Int J Robot Auton Syst 51:101–110

    Article  Google Scholar 

  104. Gonzalez-Cantos A, Ollero A (2009) Backing-up maneuvers of autonomous trailer-trailer vehicles using the qualitative theory of non-linear dynamical systems. Int J Robot Res 28(1):49–65

    Article  Google Scholar 

  105. David J, Manivannan PV (2013) Behavior based formation control of truck-trailer robots using virtual link. In: Proceedings of the Second International Conference on IRAM, Dec 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer David.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, J., Manivannan, P.V. Control of truck-trailer mobile robots: a survey. Intel Serv Robotics 7, 245–258 (2014). https://doi.org/10.1007/s11370-014-0152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-014-0152-z

Keywords

Navigation