Skip to main content

Advertisement

Log in

Kinematic and dynamic design and optimization of a parallel rehabilitation robot

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

In this paper, a method for concurrent optimum design of a complex parallel manipulator is introduced. The manipulator is a three-degree-of-freedom mechanism used as a walking rehabilitation device. The proposal deals with several optimization issues; firstly, the methodology is applied to a system recently designed and, in the best of our knowledge, the control policy, and dynamic model have not been published before, secondly, we propose an objective function which considers dexterity and singular manipulators, as well as energy and position error, and thirdly, we propose an optimization algorithm which successfully approximates the optimum solution, delivering low-cost feasible designs with fewer function evaluations than a comparing Genetic Algorithm. A set of numerical simulations validate the methodology and evidence its robustness since it delivers quite similar designs in several independent executions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abedi M, Moghaddam MM, Fallah D (2018) A poincare map based analysis of stroke patients walking after a rehabilitation by a robot. Math Biosci 299:73–84

    Article  MathSciNet  Google Scholar 

  2. Ayala H, Coelho L (2012) Tuning of pid controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Syst Appl 39(10):8968–8974

    Article  Google Scholar 

  3. Banala SK, Agrawal SK, Scholz JP (2007) Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: IEEE 10th international conference on rehabilitation robotics,ICORR 2007. pp 401–407. IEEE

  4. Cheng R, He C, Jin Y, Yao X (2018) Model-based evolutionary algorithms: a short survey. Complex Intell Syst. https://doi.org/10.1007/s40747-018-0080-1

    Article  Google Scholar 

  5. Dadashi F, Mariani B, Rochat S, Büla C, Santos-Eggimann B, Aminian K (2014) Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors 14:443–457

    Article  Google Scholar 

  6. Díaz I, Gil JJ, Sánchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot 2011:1–11. https://doi.org/10.1155/2011/759764

    Article  Google Scholar 

  7. Efron B, Tibshirani R (1994) An introduction to the bootstrap. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Fong S, Deb S, Chaudhary A (2015) A review of metaheuristics in robotics. Comput Electr Eng 43(Supplement C):278–291

    Article  Google Scholar 

  9. Harada T, Nagase M (2009) Configurations and mathematical models of parallel link mechanisms using multi drive linear motors. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2009. pp 1974–1979. IEEE

  10. Hwang S, Kim H, Choi Y, Shin K, Han C (2017) Design optimization method for 7 DOF robot manipulator using performance indices. Int J Precis Eng Manuf 18(3):293–299

    Article  Google Scholar 

  11. Khalil HK (1996) Noninear systems. Prentice-Hall, Upper Saddle River

    Google Scholar 

  12. Kumar PR, Bandyopadhyay B (2012) Stabilization of stewart platform using higher order sliding mode control. In: 7th international conference on electrical and computer engineering (ICECE), pp 945–948. IEEE

  13. Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K (2018) 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech 43:2999–3006

    Article  Google Scholar 

  14. Oña E, Cano-de la Cuerda R, Sánchez-Herrera P, Balaguer C, Jardón A (2018) A review of robotics in neurorehabilitation: towards an automated process for upper limb. J Healthc Eng 2018:1–19. https://doi.org/10.1155/2018/9758939

  15. Pellicciari M, Berselli G, Leali F, Vergnano A (2013) A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics 23(3):326–334

    Article  Google Scholar 

  16. Ravichandran T, Heppler G, Wang D (2004) Task-based optimal manipulator/controller design using evolutionary algorithms. Tech. rep., University of Waterloo

  17. Ravichandran T, Wang D, Heppler G (2006) Simultaneous plant-controller design optimization of a two-link planar manipulator. Mechatronics 16(3):233–242

    Article  Google Scholar 

  18. Reynoso-Meza G, Sanchis J, Blasco X, Martínez M (2013) Algoritmos evolutivos y su empleo en el ajuste de controladores del tipo pid: Estado actual y perspectivas. Revista Iberoamericana de Automática e Informática Industrial RIAI 10(3):251–268

    Article  Google Scholar 

  19. Rout B, Mittal R (2010) Optimal design of manipulator parameter using evolutionary optimization techniques. Robotica 28(3):381–395

    Article  Google Scholar 

  20. Schmidt H, Werner C, Bernhardt R, Hesse S, Kruger J (2007) Gait rehabilitation machines based on programmable footplates. J NeuroEng Rehabil 4(1):2

    Article  Google Scholar 

  21. Valdez S, Hernández A, Botello S (2013) A boltzmann based estimation of distribution algorithm. Inf Sci 236:126–137

    Article  MathSciNet  Google Scholar 

  22. Valdez SI, Botello-Aceves S, Becerra HM, Hernández EE (2018) Comparison between a concurrent and a sequential optimization methodology for serial manipulators using metaheuristics. IEEE Trans Industr Inf 14(7):3155–3165. https://doi.org/10.1109/TII.2018.2795103

    Article  Google Scholar 

  23. Valdez-Peña SI, Hernández-Aguirre A, Botello-Rionda S (2009) Approximating the search distribution to the selection distribution in edas. In: Proceedings of the 11th annual conference on genetic and evolutionary computation, GECCO ’09, pp 461–468. ACM. https://doi.org/10.1145/1569901.1569965

  24. Wu J, Gao Y, Zhang B, Wang L (2017) Workspace and dynamic performance evaluation of the parallel manipulators in a spray-painting equipment. Robot Comput-Integr Manuf 44:199–207

    Article  Google Scholar 

  25. Xia Y, Wang J (2001) A dual neural network for kinematic control of redundant robot manipulators. IEEE Trans Syst Man Cybern Part B (Cybern) 31(1):147–154

    Article  Google Scholar 

  26. Yano H, Tanaka N, Kamibayashi K, Saitou H, Iwata H (2015) Development of a portable gait rehabilitation system for home-visit rehabilitation. Sci World J 2015:1–12. https://doi.org/10.1155/2015/849831

  27. Zavala G, Nebro A, Luna F, Coello Coello C (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49(4):537–558

    Article  MathSciNet  Google Scholar 

  28. Zhang C, Lan B, Matsuura D, Mougenot C, Sugahara Y, Takeda Y (2018) Kinematic design of a footplate drive mechanism using a 3-DOF parallel mechanism for walking rehabilitation device. J Adv Mech Des Syst Manuf. https://doi.org/10.1299/jamdsm.2018jamdsm0017

    Article  Google Scholar 

  29. Zhang C, Lan B, Matsuura D, Mougenot C, Sugahara Y, Takeda Y (2018) Kinematic design of a footplate drive mechanism using a 3-DOF parallel mechanism for walking rehabilitation device. J Adv Mech Des Syst Manuf 12(1):JAMDSM0017

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Conacyt-Mexico for supporting part of this work through project AEM-Conacyt 262887. The fourth author was supported in part by SIP-IPN (Grants 20181422, 20196498). S. Ivvan Valdez is supported by Cátedras CONACYT No. 7795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eusebio E. Hernandez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdez, S.I., Gutierrez-Carmona, I., Keshtkar, S. et al. Kinematic and dynamic design and optimization of a parallel rehabilitation robot. Intel Serv Robotics 13, 365–378 (2020). https://doi.org/10.1007/s11370-020-00319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-020-00319-6

Keywords

Navigation