Skip to main content
Log in

An improved multi-object classification algorithm for visual SLAM under dynamic environment

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

In this paper, a novel dynamic multi-object classification method is proposed based on real-time localization of a robot equipped with a vision sensor that captures a sparse three-dimensional environment. Specifically, we build upon ORB-SLAM2 and improve its formulation to better handle moving objects in a dynamic environment. We propose a feature classification algorithm for ORB (oriented FAST and rotated BRIEF) features in complex environments. Based on inter-frame texture constraints, we add the reprojection error algorithm, which can reduce the influence of illumination and dynamic objects on the simultaneous localization and mapping (SLAM) algorithm. We then propose a new dynamic initialization strategy and apply the proposed feature classification algorithm to the ORB-SLAM2 tracking thread. For real-world implementations, we focus on the robustness and real-time performance of dynamic target segmentation simultaneously, which cannot be satisfied by existing geometric segmentation and semantic segmentation methods. From an engineering point of view, the proposed work can quickly separate dynamic feature points based on traditional methods, which makes the proposed algorithm has better real time in practical applications. We thoroughly evaluate our approach on the TUM and KITTI benchmark database and on a real environment using the Turtlebot platform equipped with a Bumblebee camera. The experimental results indicate that the proposed method is more robust and accurate than current state-of-the-art methods in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Zhang G, Tang W, Zeng J, Xu J, Yao E (2014) A survey of multi-robot cslam considering communication conditions. Zidonghua Xuebao/acta Automatica Sinica 40(010):2073–2088

    Google Scholar 

  2. Wen S, Hu X, Ma J, Sun F, Fang B (2019) Autonomous robot navigation using retinex algorithm for multiscale image adaptability in low-light environment. Intell Serv Robot 12:359–369

    Article  Google Scholar 

  3. Lu Z, Hu Z, Uchimura K (2009) SLAM Estimation in Dynamic Outdoor Environments: A Review, In: Intelligent robotics and applications, Berlin, Heidelberg, pp. 255–267

  4. Tian G, Liu L, Ri J, Liu Y, Sun Y (2019) Object Fusion : An object detection and segmentation framework with RGB-D SLAM and convolutional neural networks. Neurocomputing 345:3–14

    Article  Google Scholar 

  5. Singandhupe A, La HM (2019) A Review of SLAM techniques and security in autonomous driving, In: Third IEEE International conference on robotic computing (IRC) 2019:602–607. https://doi.org/10.1109/IRC.2019.00122

    Article  Google Scholar 

  6. Engel J, Schöps T, Cremers D (2014) LSD-SLAM: Large-Scale Direct Monocular SLAM, In: European Conference on Computer Vision (ECCV), pp. 834–849

  7. Mur-Artal R, Montiel JMM, Tardós JD (2015) Orb-slam: A versatile and accurate monocular slam system. IEEE Transact Robot 31(5):1147–1163. https://doi.org/10.1109/TRO.2015.2463671

    Article  Google Scholar 

  8. Mur-Artal R, Tardós JD (2017) ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Transact Robot 33(5):1255–1262. https://doi.org/10.1109/TRO.2017.2705103

    Article  Google Scholar 

  9. Qin T, Li P, Shen S (2018) VINS-Mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transact Robot 34(4):1004–1020. https://doi.org/10.1109/TRO.2018.2853729

    Article  Google Scholar 

  10. Wang R, Schwörer M, Cremers D (2017) Stereo DSO: Large-scale direct sparse visual odometry with stereo cameras, In: IEEE International conference on computer vision (ICCV) 2017:3923–3931. https://doi.org/10.1109/ICCV.2017.421

  11. Xu B, Li W, Tzoumanikas D, Bloesch M, Davison A, Leutenegger S (2019) MID-Fusion: octree-based object-level multi-instance dynamic SLAM, In. International conference on robotics and automation (ICRA) 2019:5231–5237. https://doi.org/10.1109/ICRA.2019.8794371

  12. Wen S, Li P, Zhao Y, Z. H., Z. Wang, (2021) Semantic visual slam in dynamic environment. Autonomous Robots. https://doi.org/10.1007/s10514-021-09979-4

  13. Xiao L, Wang J, Qiu X, Rong Z, Zou X (2019) Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot Auton Sys 117:1–16

    Article  Google Scholar 

  14. Judd KM, Gammell JD, Newman P (2018) Multimotion visual odometry (MVO): simultaneous estimation of camera and third-party motions, In: IEEE/RSJ International conference on intelligent robots and systems (IROS) 2018:3949–3956. https://doi.org/10.1109/IROS.2018.8594213

    Article  Google Scholar 

  15. Kundu A, Krishna KM, Jawahar CV (2011) Realtime multibody visual SLAM with a smoothly moving monocular camera, In: International conference on computer vision 2011:2080–2087. https://doi.org/10.1109/ICCV.2011.6126482

    Article  Google Scholar 

  16. Alcantarilla PF, Yebes JJ, Almazán J, Bergasa LM (2012) On combining visual SLAM and dense scene flow to increase the robustness of localization and mapping in dynamic environments, In: IEEE International conference on robotics and automation 2012:1290–1297. https://doi.org/10.1109/ICRA.2012.6224690

    Article  Google Scholar 

  17. Wang Y, Huang S (2014) Towards dense moving object segmentation based robust dense RGB-D SLAM in dynamic scenarios, In: 2014 13th International conference on control automation robotics vision (ICARCV), pp. 1841–1846. https://doi.org/10.1109/ICARCV.2014.7064596

  18. Sun D, Geißer F, Nebel B (2016) Towards effective localization in dynamic environments, In: IEEE/RSJ International conference on intelligent robots and systems (IROS) 2016:4517–4523. https://doi.org/10.1109/IROS.2016.7759665

  19. Zou D, Tan P (2013) CoSLAM: Collaborative Visual SLAM in Dynamic Environments. IEEE Transact Pattern Anal Machine Intell 35(2):354–366. https://doi.org/10.1109/TPAMI.2012.104

    Article  Google Scholar 

  20. Kim D, Kim J (2016) Effective background model-based RGB-D dense visual odometry in a dynamic environment. IEEE Transact Robot 32(6):1565–1573. https://doi.org/10.1109/TRO.2016.2609395

    Article  Google Scholar 

  21. Kerl C, Sturm J, Cremers D (2013) Dense visual slam for rgb-d cameras, In: IEEE/RSJ International conference on intelligent robots and systems 2013:2100–2106. https://doi.org/10.1109/IROS.2013.6696650

    Article  Google Scholar 

  22. Liu G, Zeng W, Feng B, Xu F (2019) Dms-slam: A general visual slam system for dynamic scenes with multiple sensors, Sensors 19 (17) . https://doi.org/10.3390/s19173714 . https://www.mdpi.com/1424-8220/19/17/3714

  23. Dai W, Zhang Y, Li P, Fang Z, Scherer S (2020) Rgb-d slam in dynamic environments using point correlations. IEEE Transact Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2020.3010942

    Article  Google Scholar 

  24. Bescos B, Fácil JM, Civera J, Neira J (2018) DynaSLAM: tracking, mapping and inpainting in dynamic scenes. IEEE Robot Automat Lett 3(4):4076–4083. https://doi.org/10.1109/LRA.2018.2860039

    Article  Google Scholar 

  25. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN, In: IEEE International conference on computer vision (ICCV) 2017:2980–2988. https://doi.org/10.1109/ICCV.2017.322

    Article  Google Scholar 

  26. Yu C, Liu Z, Liu X, Xie F, Yang Y, Wei Q, Fei Q, DS-SLAM: A semantic visual SLAM towards dynamic environments, year=2018, In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS), pp. 1168–1174. https://doi.org/10.1109/IROS.2018.8593691

  27. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transact Pattern Anal Machine Intell 39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  28. Zhang J, Henein M, Mahony R, Ila V (2020) VDO-SLAM: A visual dynamic object-aware SLAM system . arXiv:2005.11052

  29. Schörghuber M, Steininger D, Cabon Y, Humenberger M, Gelautz M (2019) Slamantic - leveraging semantics to improve vslam in dynamic environments, In: IEEE/CVF International conference on computer vision workshop (ICCVW) 2019:3759–3768. https://doi.org/10.1109/ICCVW.2019.00468

    Article  Google Scholar 

  30. Wen S, Li P, Zhao Y, Zhang H, Sun F, Wang Z (2021) Semantic visual SLAM in dynamic environment. Autonomous Robots 45:493-504

    Article  Google Scholar 

  31. Zhong F, Wang S, Zhang Z, Chen C, Wang Y (2018) Detect-slam: Making object detection and slam mutually beneficial, In: IEEE Winter conference on applications of computer vision (WACV) 2018:1001–1010. https://doi.org/10.1109/WACV.2018.00115

    Article  Google Scholar 

  32. Rünz M, Agapito L (2017) Co-fusion: Real-time segmentation, tracking and fusion of multiple objects, In: IEEE International conference on robotics and automation (ICRA) 2017:4471–4478. https://doi.org/10.1109/ICRA.2017.7989518

  33. Palazzolo E, Behley J, Lottes P, Giguère P, Stachniss C (2019) Refusion: 3d reconstruction in dynamic environments for rgb-d cameras exploiting residuals, In: IEEE/RSJ International conference on intelligent robots and systems (IROS) 2019:7855–7862. https://doi.org/10.1109/IROS40897.2019.8967590

  34. Liu Y, Miura J (2021) Rds-slam: real-time dynamic slam using semantic segmentation methods. IEEE Access 9:23772–23785. https://doi.org/10.1109/ACCESS.2021.3050617

    Article  Google Scholar 

  35. Hassanpour H, Sedighi M, Manashty AR (2011) Video Frame’s Background modeling: reviewing the techniques. J Signal Infor Process 2(2):72–78

  36. Yang G, Chen K, Zhou M, Xu Z, Chen Y (2007) Study on statistics iterative thresholding segmentation based on aviation image, In: Eighth ACIS International conference on software engineering, Artificial intelligence, Networking, and Parallel/Distributed computing (SNPD 2007), Vol. 2, , pp. 187–188. https://doi.org/10.1109/SNPD.2007.512

  37. Hartley R. I, Zisserman A (2004) Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, ISBN: 0521540518,

  38. Mann H. B, Wald A (1942) On the choice of the number of class intervals in the application of the chi square test, The Annals of Mathematical Statistics 13(3):306–317. http://www.jstor.org/stable/2235942

  39. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A benchmark for the evaluation of rgb-d slam systems, In: IEEE/RSJ International conference on intelligent robots and systems 573–580. https://doi.org/10.1109/IROS.2012.6385773

  40. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite, In: IEEE Conference on computer vision and pattern recognition 2012:3354–3361. https://doi.org/10.1109/CVPR.2012.6248074

    Article  Google Scholar 

  41. Grupp M, (2017) evo: Python package for the evaluation of odometry and slam., https://github.com/MichaelGrupp/evo

Download references

Acknowledgements

The work was partly supported by the National Natural Science Foundation of China (NSFC, Project No. 61773333), the National Natural Science Foundation of China and the Royal Society of Britain (NSFC-RS, Project No. 62111530148) and the China Scholarship Council (CSC, Project No.201908130016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhuan Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Liu, X., Wang, Z. et al. An improved multi-object classification algorithm for visual SLAM under dynamic environment. Intel Serv Robotics 15, 39–55 (2022). https://doi.org/10.1007/s11370-021-00400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-021-00400-8

Keywords

Navigation