Skip to main content
Log in

Low-Complexity Bit-Parallel Multiplier over GF(2m) Using Dual Basis Representation

  • Short Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Recently, cryptographic applications based on finite fields have attracted much attention. The most demanding finite field arithmetic operation is multiplication. This investigation proposes a new multiplication algorithm over GF(2m using the dual basis representation. Based on the proposed algorithm, a parallel-in parallel-out systolic multiplier is pesented. The architecture is optimized in order to minimize the silicon covered area (transistor count). The experimental results reveal that the proposed bit-parallel multiplier saves about 65% space complexity and 33% time complexity as compared to the traditional multipliers for a general polynomial and dual basis of GF(2m).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macwilliams F J, Sloane N J A. The Theory of Error-Correcting Codes. Amsterdam: North-Holland, 1977.

    MATH  Google Scholar 

  2. Lidl R, Niederreiter H. Introduction to Finite Fields and Their Applications. New York: Cambridge Univ. Press, 1994.

    MATH  Google Scholar 

  3. Yeh C S, Reed S, Truong T K. Systolic multipliers for finite fields GF(2m). IEEE Trans. Computers, 1984, 33(4): 357–360.

    MathSciNet  Google Scholar 

  4. Lee C Y, Lu E H, Lee J Y. Bit-parallel systolic multipliers for GF(2m) fields defined by all-one and equally-spaced polynomials. IEEE Trans. Computers, 2001, 50(5): 385–393.

    Article  MathSciNet  Google Scholar 

  5. Lee C Y. Low complexity bit-parallel systolic multiplier over GF(2m) using irreducible trinomials. IEE Computers and Digital Techniques, 2003, 150(1): 39–42.

    Article  Google Scholar 

  6. Lee C Y. Low-latency bit-parallel systolic multiplier for irreducible x m+x n+1 with gcd(m, n) = 1. IEICE Trans. Fundamentals, 2003, E86-A(11): 2844–2852.

    Google Scholar 

  7. Wang C L, Lin J L. Systolic array implementation of multipliers for GF(2m). IEEE Trans. Circuits and Systems II, 1991, 38(7): 796–800.

    Article  Google Scholar 

  8. Fenn S T J, Benaissa M, Taylor O. Dual basis systolic multipliers for GF(2m). IEE Computers and Digital Techniques, 1997, 144(1): 43–46.

    Article  Google Scholar 

  9. Massey J L, Omura J K. Computational method and apparatus for finite field arithmetic. U.S. Patent Number 4.587.627, 1986.

  10. Wang C C, Truong T K, Shao H M et al. VLSI architectures for computing multiplications and inverses in GF(2m). IEEE Trans. Computers, 1985, 34(8): 709–717.

    Google Scholar 

  11. Oh S, Kim C H, Lim J, Cheon D H. Efficient normal basis multipliers in composite fields. IEEE Trans. Computers, 2000, 49(10): 1133–1138.

    Article  Google Scholar 

  12. Fan H, Dai Y. Key function of normal basis multipliers in GF(2n). Electronics Letters, 2002, 38(23): 1431–1432.

    Article  Google Scholar 

  13. Berlekamp E R. Bit-serial Reed-Solomon encoder. IEEE Trans. Inform. Theory, 1982, 28(11): 869–874.

    Article  Google Scholar 

  14. Morii M, Kasahara M, Whiting D L. Efficient bit-serial multiplication and the discrete-time Wiener-Hopf equation over finite fields. IEEE Trans. Inform. Theory, 1989, 35(6): 1177–1183.

    Article  MathSciNet  Google Scholar 

  15. Fenn S T J, Benaissa M, Taylor D. GF(2m) multiplication and division over the dual basis. IEEE Trans. Computers, 1996, 45(3): 319–327.

    Article  Google Scholar 

  16. Wang C C. An algorithm to design finite field multipliers using a self-dual normal basis. IEEE Trans. Computers, 1989, 38(10): 1457–1459.

    Article  Google Scholar 

  17. Wang M, Blake I F. Bit serial multiplication in finite fields. SIAM J. Disc. Math., 1990, 3(1): 140–148.

    Article  MathSciNet  Google Scholar 

  18. Diab M, Poli A. New bit-serial systolic multiplier for GF(2m) using irreducible trinomials. Electronics Letters, 1991, 27(13): 1183–1184.

    Google Scholar 

  19. Wei S W. A systolic power-sum circuit for GF(2m). IEEE Trans. Computers, 1994, 43(2): 226–229.

    Article  Google Scholar 

  20. Kim N Y, Kim H S, Yoo K Y. Computation of AB 2 multiplication in GF(2m) using low-complexity systolic architecture. IEE Proc. Circuits Devices Syst., 2003, 150(2): 119–123.

    Article  Google Scholar 

  21. Lee C Y, Horng J S, Jou I C. Low-complexity bit-parallel systolic montgomery multipliers for special classes of GF(2m). IEEE Trans. Computers, 2005, 54(9): 1061–1070.

    Article  Google Scholar 

  22. Lee C Y, Lu E H, Sun L F. Low-complexity bit-parallel systolic architecture for computing AB 2+C in a class of finite field GF(2m). IEEE Trans. Circuits and Systems II, 2001, 50(5): 519–523.

    Google Scholar 

  23. Pekmestzi K Z. Multiplexer-based array multipliers. IEEE Trans. Computers, 1999, 48(1): 15–23.

    Article  MathSciNet  Google Scholar 

  24. Seroussi G. Table of low-weight binary irreducible polynomials. Technical Report HPL-98-135, Hewlett-Packard Laboratories, Palo Alto, Calif., Aug. 1998, Available at http://www.hpl.hp.com/techreports/98/HPL-98-135.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiou-Yng Lee.

Additional information

The work was supported in part by the “National Science Council” under Grant No. NSC-94-2218-E-262-003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CY., Horng, JS. & Jou, IC. Low-Complexity Bit-Parallel Multiplier over GF(2m) Using Dual Basis Representation. J Comput Sci Technol 21, 887–892 (2006). https://doi.org/10.1007/s11390-006-0887-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-006-0887-x

Keywords

Navigation