Skip to main content

Advertisement

Log in

Targeted Local Immunization in Scale-Free Peer-to-Peer Networks

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The power-law node degree distributions of peer-to-peer overlay networks make them extremely robust to random failures whereas highly vulnerable under intentional targeted attacks. To enhance attack survivability of these networks, DeepCure, a novel heuristic immunization strategy, is proposed to conduct decentralized but targeted immunization. Different from existing strategies, DeepCure identifies immunization targets as not only the highly-connected nodes but also the nodes with high availability and/or high link load, with the aim of injecting immunization information into just right targets to cure. To better trade off the cost and the efficiency, DeepCure deliberately select these targets from 2-local neighborhood, as well as topologically-remote but semantically-close friends if needed. To remedy the weakness of existing strategies in case of sudden epidemic outbreak, DeepCure is also coupled with a local-hub oriented rate throttling mechanism to enforce proactive rate control. Extensive simulation results show that DeepCure outperforms its competitors, producing an arresting increase of the network attack tolerance, at a lower price of eliminating viruses or malicious attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. In Proc. SIGCOMM, Cambridge, MA, 1999, pp.251–262.

  2. Pastor-Satorras R, Vazquez A, Vespignani A. Dynamical and correlation properties of the Internet. Phys. Rev. Lett., 2001, 87: 258701.

    Article  Google Scholar 

  3. Vazquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of the Internet. Phys. Rev. E., 2002, 65: 66130.

    Article  Google Scholar 

  4. Pastor-Satorras R, Vespignani A. Evolution and Structure of the Internet: A Statistical Physics Approach. Hardcover: Cambridge University Press, 2004.

    Google Scholar 

  5. Ripeanu M. Peer-to-peer architecture case study: Gnutella network. Technical Report TR-2001-26, University of Chicago, 2001.

  6. Sen S, Wang J. Analyzing peer-to-peer traffic across large networks. IEEE/ACM Transactions on Networking, 2004, 12(2): 137–150.

    Article  Google Scholar 

  7. Barabási A-L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509–512.

    Article  MathSciNet  Google Scholar 

  8. Dorogovtsev S N, Mendes J F F. Evolution of Networks: From Biological Nets to the Internet and the WWW. Oxford, UK: Oxford University Press, 2003.

    MATH  Google Scholar 

  9. Newman M. The structure and function of complex networks. SIAM Review, 2003, 45(2): 167–256.

    Article  MATH  MathSciNet  Google Scholar 

  10. Bornholdt S, Schuster H G. Handbook of Graphs and Networks: From the Genome to the Internet. Germany: John Wiley-VCH, 2003.

    MATH  Google Scholar 

  11. Albert R, Jeong H, Barabási A-L. Error and attack tolerance of complex networks. Nature, 2000, 406: 378–382.

    Article  Google Scholar 

  12. Pastor-Satorras R, Vespignani A. Immunization of complex networks. Phys. Rev. E., 2002, 65: 036104.

    Article  Google Scholar 

  13. Ratnasamy S, Francis P, Handley M et al. A scalable content-addressable network. In Proc. SIGCOMM, San Diego, CA, 2001, pp.161–172.

  14. Stoica I, Morris R, Karger D et al. Chord: A scalable peer-to-peer lookup service for Internet applications. In Proc. SIGCOMM, San Diego, CA, 2001, pp.161–172.

  15. Rowstron A, Druschel P. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proc. ACM Middleware, Heidelberg, Germany, 2001, pp.329–350.

  16. Zhao B Y, Kubiatowicz J D, Joseph A D et al. Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Technical Report CSD-01-1141, UC Berkeley, 2001.

  17. Manku G S, Bawa M, Raghavan P. Symphony: Distributed hashing in a small world. In Proc. USITS, Seattle, USA, 2003, pp.127–140.

  18. Gnutella. http://www.gnutella.wego.com/.

  19. Clarke I, Sandberg O, Wiley B et al. Freenet: A distributed anonymous information storage and retrieval system. In Proc. International Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, 2001, pp.161–172.

  20. Jovanovic M, Annexstein F, Berman K. Modeling peer-to-peer network topologies through small-world models and power laws. In Proc. Telecommunications Forum, Belgrade, Yugoslavia, 2001, pp.161–172.

  21. Zhang H, Goel A, Govindan R. Using the small-world model to improve freenet performance. In Proc. INFOCOM, New York, USA, 2002, pp.1228–1237.

  22. Manku G S, Naor M, Wieder U. Know thy neighbor’s neighbor: The power of lookahead in randomized P2P networks. In Proc. STOC, Chicago, USA, Jun. 2004, pp.54–63.

  23. Zhou L, Zhang L, McSherry F et al. A first look at peer-to-peer worms: Threats and defenses. In Proc. IPTPS, Ithaca, NY, 2005, pp.24–35.

  24. Chothia T, Chatzikokolakis K. A Survey of Anonymous Peer-to-Peer File-Sharing. In Proc. NCUS, Nagasaki, Japan, 2005, pp.744–755.

  25. Dezso Z, Barabási A-L. Halting viruses in scale-free networks. Phys. Rev. E., 2002, 65: 055103.

    Article  Google Scholar 

  26. Cohen R, Havlin S, Daniel ben-A. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett., 2003, 91: 247901.

    Article  Google Scholar 

  27. Madar N, Kalisky T, Cohen R et al. Immunization and epidemics dynamics in complex networks. Eur. Phys. J. B, 2004, 38: 269–276.

    Article  Google Scholar 

  28. Echenique P, Gómez-Gardenes J, Moreno Y et al. Distance-d covering problem in scale-free networks with degree correlations. Phys. Rev. E., 2005, 71: 035102.

    Article  Google Scholar 

  29. Gómez-Gardenes J, Echenique P, Moreno Y. Immunization of real complex networks. Eur. Phys. J. B, 2006, 49: 259–264.

    Article  Google Scholar 

  30. Holme P. Efficient local strategies for vaccination and network attack. Europhys. Lett., 2004, 68: 908–914.

    Article  Google Scholar 

  31. Moreno Y, Pastor-Satorras R, Vespignani A. Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B, 2002, 26: 521–529.

    Article  Google Scholar 

  32. Saroiu S, Gummadi P K, Gribble S D. A measurement study of peer-to-peer file sharing systems. In Proc. MMCN, San Jose, CA, 2002, pp.156–170.

  33. Adar E, Huberman B. Free Riding on Gnutella. Technical Report, Xerox PARC, Aug. 2000.

  34. Motter A E, Nishikawa T, Lai Y C. Range-based attack on links in scale-free networks: Are long-range links responsible for the small-world phenomenon. Phys. Rev. E., 2002, 66: 065103.

    Article  Google Scholar 

  35. Holme P, Kim B J, Yoon C N et al. Attack vulnerability of complex networks. Phys. Rev. E., 2002, 65: 056109.

    Article  Google Scholar 

  36. Newman M. Scientific collaboration networks, II: Shortest paths, weighted networks, and centrality. Phys. Rev. E., 2001, 64: 016132.

    Article  Google Scholar 

  37. Goh K-I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett., 2001, 87: 278701.

    Article  Google Scholar 

  38. Holme P. Congestion and centrality in traffic flow on complex networks. Advances in Complex Systems, 2003, 6: 163–176.

    Article  MATH  Google Scholar 

  39. Zhou S, Mondragon R J. Accurately modeling the Internet topology. Phys. Rev. E., 2004, 70: 066108.

    Article  Google Scholar 

  40. Maslov S, Sneppen K, Zaliznyak A. Pattern detection in complex networks: Correlation profile of the Internet. Physica A, 2004, 333: 529–540.

    Article  Google Scholar 

  41. Newman M. Assortative mixing in networks. Phys. Rev. Lett., 2002, 89: 208701.

    Article  Google Scholar 

  42. Clip2 Distributed Search Solutions. http://www.clip2.com.

  43. Crespo A, Molina H G. Semantic overlay networks for P2P systems. Technical Report, Stanford University, 2003.

  44. Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. Technical Report TR99-1776, Cornell University, 1999.

  45. Williamson M. Throttling Viruses: Restricting propagation to defeat malicious mobile code. Technical Report HPL2002-172, HP Lab, 2002.

  46. Hethcote H W. Three basic epidemiological models. Biomathematics, 1989, 18: 119–144.

    MathSciNet  Google Scholar 

  47. Palmer C R, Steffan J G. Generating network topologies that obey power laws. In Proc. GLOBECOM, Pittsburgh, PA, 2000, pp.434–438.

  48. Xu J, Wang X F. Cascading failures in coupled map lattices. Physica A, 2005, 369: 685–692.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Li Huang.

Additional information

This research work is supported in part by the National High Technology Research and Development 863 Program of China under Grant No. 2004AA104270.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XL., Zou, FT. & Ma, FY. Targeted Local Immunization in Scale-Free Peer-to-Peer Networks. J Comput Sci Technol 22, 457–468 (2007). https://doi.org/10.1007/s11390-007-9046-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-007-9046-2

Keywords

Navigation