Skip to main content
Log in

Model Transduction for Triangle Meshes

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

This paper proposes a novel method, called model transduction, to directly transfer pose between different meshes, without the need of building the skeleton configurations for meshes. Different from previous retargetting methods, such as deformation transfer, model transduction does not require a reference source mesh to obtain the source deformation, thus effectively avoids unsatisfying results when the source and target have different reference poses. Moreover, we show other two applications of the model transduction method: pose correction after various mesh editing operations, and skeleton-free deformation animation based on 3D Mocap (Motion capture) data. Model transduction is based on two ingredients: model deformation and model correspondence. Specifically, based on the mean-value manifold operator, our mesh deformation method produces visually pleasing deformation results under large angle rotations or big-scale translations of handles. Then we propose a novel scheme for shape-preserving correspondence between manifold meshes. Our method fits nicely in a unified framework, where the similar type of operator is applied in all phases. The resulting quadratic formulation can be efficiently minimized by fast solving the sparse linear system. Experimental results show that model transduction can successfully transfer both complex skeletal structures and subtle skin deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gleicher M. Retargeting motion to new characters. In Proc. SIGGRAPH, Orlando, USA, July 19–24, 1998, pp.33–42.

  2. Lee J, Shin S Y. A hierarchical approach to interactive motion editing for human-like figures. In Proc. SIGGRAPH, Los Angeles, USA, Aug. 8–13, 1999, pp.39–48.

  3. Popovic Z, Witkin A P. Physically based motion transformation. In Proc. SIGGRAPH, Los Angeles, USA, Aug. 8–13, 1999, pp.11–20.

  4. Park S I, Hodgins J K. Capturing and animating skin deformation in human motion. ACM Transactions on Graphics, 2006, 25(3): 881–889.

    Article  Google Scholar 

  5. Magnenat-Thalmann N, Laperriµere R, Thalmann D. Joint-dependent local deformations for hand animation and object grasping. In Proc. Graphics Interface, Edmonton, Canada, June 6–10, 1988, pp.26–33.

  6. Lewis J P, Cordner M, Fong N. Pose space deformations: A unified approach to shape interpolation and skeleton-driven deformation. In Proc. SIGGRAPH, New Orleans, USA, July 23–28, 2000, pp.165–172.

  7. Kry P G, James D L, Pai D K. EigenSkin: Real time large deformation character skinning in hardware. In Proc. ACM SIGGRAPH Symposium on Computer Animation, San Antonio, USA, July 21-22, 2002, pp.153–160.

  8. Sumner R W, Popović J. Deformation transfer for triangle meshes. ACM Trans. Graphics, 2004, 23(3): 399–405.

    Article  Google Scholar 

  9. Noh J, Neumann U. Expression cloning. In Proc. SIG-GRAPH, Los Angeles, USA, Aug. 12–17, 2001, pp.277–288.

  10. Zayer R, Rossl C, Karni Z, Seidel H P. Harmonic guidance for surface deformation. Eurographics, 2005, 24(3): 601–609.

    Google Scholar 

  11. Shi X, Zhou K, Tong Y, Desbrun M, Bao H, Guo B. Mesh puppetry: Cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph., 2007, 26(3): 81.

    Article  Google Scholar 

  12. N Vladimir Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 2000.

    Google Scholar 

  13. Praun E, Hoppe H. Spherical parametrization and remeshing. In Proc. SIGGRAPH, San Diego, USA, July 27–31, 2003, pp.340–349.

  14. Floater M S. Mean value coordinates. Computer Aided Geometric Design, 2003, 20(1): 19–27.

    Article  MATH  MathSciNet  Google Scholar 

  15. Kraevoy V, Sheffer A. Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graphics, 2004, 23(3): 861–869.

    Article  Google Scholar 

  16. Wu H Y, Pan C, Yang Q, Ma S. Consistent correspondence between arbitrary manifold surfaces. In Proc. ICCV, Rio de Janeiro, Brazil, Oct. 14–20, 2007.

  17. Allen B, Curless B, Popović Z. The space of human body shapes: Reconstruction and parameterization from range scans. In Proc. SIGGRAPH, San Diego, USA, July 27–31, 2003, pp.587–594.

  18. Nielson G M, Zhang L Y, Lee K, Huang A. Spherical parameterization of marching cubes isosurfaces based upon nearest neighbor coordinates. Journal of Computer Science and Technology,, 2009 24(1): 30–38.

    Article  Google Scholar 

  19. Sederberg T W, Parry S R. Free-form deformation of solid geometric models. In Proc. SIGGRAPH, Dallas, USA, Aug. 18–22, 1986, pp.151–160.

  20. Sorkine O, Lipman Y, Cohen-Or D, Alexa M, Rössl C, Seidel H P. Laplacian surface editing. In Proc. Eurographics Symposium on Geometry Processing, Nice, France, July 8–10, 2004, pp.179–188.

  21. Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H Y. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graphics, 2004, 23(3): 644–651.

    Article  Google Scholar 

  22. Alla Sheffer, Vladislav Kraevoy. Pyramid coordinates for morphing and deformation. In Proc. 3DPVT, Thessaloniki, Greece, Sept. 6–9, 2004, pp.68–75.

  23. Lipman Y, Sorkine O, Levin D, Cohen-Or D. Linear rotation-invariant coordinates for meshes. In Proc. SIGGRAPH, Los Angeles, USA, July 31–Aug. 4, 2005, pp.479–487.

  24. Angelidis A, Wyvill G, Cani M P. Sweepers: Swept deformation defined by gesture. Graphical Models, 2006, 68(1): 2–14.

    Article  MATH  Google Scholar 

  25. Botsch M, Pauly M, Rossl C, Bischoff S, Kobbelt L. Geometric modeling based on triangle meshes. In SIGGRAPH Courses, Boston, USA, July 30–Aug. 8, 2006.

  26. Sifakis E, Shinar T, Irving G, Fedkiw R. Hybrid simulation of deformable solids. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, USA, Aug. 2–4, 2007, pp.81–90.

  27. Mezger J, Thomaszewski B, Pabst S, Stra¼er W. Interactive physically-based shape editing. In Proc. ACM Symposium on Solid and Physical Modeling, New York, USA, June 2–4, 2008, pp.79–89.

  28. Xu W W, Zhou K. Gradient domain mesh deformation – A survey. Journal of Computer Science and Technology, 2009, 24(1): 6–18.

    Article  Google Scholar 

  29. Zhao Y, Liu X G, Peng Q S, Bao H J. Rigidity constraints for large mesh deformation. Journal of Computer Science and Technology, 2009, 24(1): 47–55.

    Article  Google Scholar 

  30. Cohen-Or D. Space deformations, surface deformations and the opportunities in-between. Journal of Computer Science and Technology, 2009, 24(1): 2–5.

    Article  Google Scholar 

  31. Huang J, Shi X, Liu X, Zhou K, Wei L Y, Teng S H, Bao H, Guo B, Shum H Y. Subspace gradient domain mesh deformation. ACM Transactions on Graphics, 2006, 25(3): 1126–1134.

    Article  Google Scholar 

  32. Botsch M, Pauly M, Gross M, Kobbelt L. PriMo: Coupled prisms for intuitive surface modeling. In Proc. Eurographics Symposium on Geometry Processing, Cagliari, Italy, June 26–28, 2006, pp.11–20.

  33. Sorkine O, Alexa M. As-rigid-as-possible surface modeling. In Proc. Eurographics Symposium on Geometry Processing, Barcelona, Spain, July 4–6, 2007, pp.109–116.

  34. Kraevoy V, Sheffer A. Mean-value geometry encoding. International Journal of Shape Modeling, 2006, 12(1): 29–46.

    Article  MATH  Google Scholar 

  35. Lipman Y, Cohen-Or D, Gal R, Levin D. Volume and shape preservation via moving frame manipulation. ACM Transactions on Graphics, 2007, 26(1): 5.

    Article  Google Scholar 

  36. Mount D M, Arya S. Ann: A library for approximate nearest neighbor searching, version 1.1.1. Aug.4, 2006, http://www.cs.umd.edu/∼mount/ANN/.

  37. Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 2007, 14(1): 213–230.

    Article  Google Scholar 

  38. Pinkall U, Polthier K. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 1993, 2(1): 15–36.

    MATH  MathSciNet  Google Scholar 

  39. Hormann K, Floater M S. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics, 2006, 25(4): 1424–1441.

    Article  Google Scholar 

  40. Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290: 2323–2326.

    Article  Google Scholar 

  41. Au O K C, Tai C L, Liu L, Fu H. Dual Laplacian editing for meshes. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(3): 386–395.

    Article  Google Scholar 

  42. Desbrun M, Meyer M, Schröder P, Barr A H. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH, Los Angeles, USA, Aug. 8–13, 1999, pp.317–324.

  43. Au O K C, Tai C L, Chu H K, Cohen-Or D, Lee T Y. Skeleton extraction by mesh contraction. ACM Trans. Graphics, 2008, 27(3): 44.

    Article  Google Scholar 

  44. TOLEDO S. Taucs: A library of sparse linear solvers, version 2.2. Tel Aviv University, Sept.4, 2003, http://www.tau.ac.il/∼stoledo/taucs.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Yu Wu.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant Nos. 60903060 and 60675012, the National High-Tech Research and Development 863 Program of China under Grant No. 2009AA012104, and the China Postdoctoral Science Foundation under Grant No. 20080440258.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HY., Pan, CH., Zha, HB. et al. Model Transduction for Triangle Meshes. J. Comput. Sci. Technol. 25, 583–594 (2010). https://doi.org/10.1007/s11390-010-9347-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9347-8

Keywords

Navigation