Skip to main content
Log in

Greedy Randomized Adaptive Search Procedure with Path-Relinking for the Vertex p-Center Problem

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The p-center problem consists of choosing a subset of vertices in an undirected graph as facilities in order to minimize the maximum distance between a client and its closest facility. This paper presents a greedy randomized adaptive search procedure with path-relinking (GRASP/PR) algorithm for the p-center problem, which combines both GRASP and path-relinking. Each iteration of GRASP/PR consists of the construction of a randomized greedy solution, followed by a tabu search procedure. The resulting solution is combined with one of the elite solutions by path-relinking, which consists in exploring trajectories that connect high-quality solutions. Experiments show that GRASP/PR is competitive with the state-of-the-art algorithms in the literature in terms of both solution quality and computational efficiency. Specifically, it virtually improves the previous best known results for 10 out of 40 large instances while matching the best known results for others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kariv O, Hakimi S L. An algorithmic approach to network location problems. I: The p-centers. SIAM Journal on Applied Mathematics, 1979, 37(3): 513-538.

    Article  MathSciNet  MATH  Google Scholar 

  2. Kariv O, Hakimi S L. An algorithmic approach to network location problems. II: The p-medians. SIAM Journal on Applied Mathematics, 1979, 37(3): 539-560.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hakimi S L. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 1964, 12(3): 450-459.

    Article  MATH  Google Scholar 

  4. Minieka E. The m-center problem. SIAM Review, 1970, 12(1): 138-139.

    Article  MathSciNet  MATH  Google Scholar 

  5. Daskin M S. Network and Discrete Location: Models Algorithms and Applications. John Wiley & Sons, 1995.

  6. Daskin M S. A new approach to solving the vertex p-center problem to optimality: Algorithm and computational results. Communications of the Operations Research Society of Japan, 2000, 45(9): 428-436.

    Google Scholar 

  7. Ilhan T, Pinar M C. An efficient exact algorithm for the vertex p-center problem. http://www.optimizationonline.org/DB HTML/2001/09/376.html, June 2017.

  8. Elloumi S, Labbé M, Pochet Y. A new formulation and resolution method for the p-center problem. INFORMS Journal on Computing, 2004, 16(1): 84-94.

    Article  MathSciNet  MATH  Google Scholar 

  9. Al-Khedhairi A, Salhi S. Enhancements to two exact algorithms for solving the vertex p-center problem. Journal of Mathematical Modelling and Algorithms, 2005, 4(2): 129-147.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hochbaum D S, Shmoys D B. A best possible heuristic for the k-center problem. Mathematics of Operations Research, 1985, 10(2): 180-184.

    Article  MathSciNet  MATH  Google Scholar 

  11. Martinich J S. A vertex-closing approach to the p-center problem. Naval Research Logistics, 1988, 35(2): 185-201.

    Article  MathSciNet  MATH  Google Scholar 

  12. Plesník J. A heuristic for the p-center problems in graphs. Discrete Applied Mathematics, 1987, 17(3): 263-268.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mladenović N, Labbé M, Hansen P. Solving the p-center problem with tabu search and variable neighborhood search. Networks, 2003, 42(1): 48-64.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hassin R, Levin A, Morad D. Lexicographic local search and the p-center problem. European Journal of Operational Research, 2003, 151(2): 265-279.

    Article  MathSciNet  MATH  Google Scholar 

  15. Caruso C, Colorni A, Aloi L. Dominant, an algorithm for the p-center problem. European Journal of Operational Research, 2003, 149(1): 53-64.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pacheco J A, Casado S. Solving two location models with few facilities by using a hybrid heuristic: A real health resources case. Computers & Operations Research, 2005, 32(12): 3075-3091.

    Article  MATH  Google Scholar 

  17. Davidović T, Ramljak D, Šelmić M, Teodorović D. Bee colony optimization for the p-center problem. Computers & Operations Research, 2011, 38(10): 1367-1376.

    Article  MathSciNet  MATH  Google Scholar 

  18. Yurtkuran A, Emel E. A modified artificial bee colony algorithm for p-center problems. The Scientific World Journal, 2014, 2014: 824196.

    Google Scholar 

  19. Scaparra M P, Pallottino S, Scutellà M G. Large-scale local search heuristics for the capacitated vertex p-center problem. Networks, 2004, 43(4): 241-255.

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng T C E, Kang L Y, Ng C T. An improved algorithm for the p-center problem on interval graphs with unit lengths. Computers & Operations Research, 2007, 34(8): 2215-2222.

    Article  MathSciNet  MATH  Google Scholar 

  21. Krumke S O. On a generalization of the p-center problem. Information Processing Letters 1995, 56(2): 67-71.

    Article  MathSciNet  Google Scholar 

  22. Arostegui M A Jr, Kadipasaoglu S N, Khumawala B M. An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems. International Journal of Production Economics, 2006, 103(2): 742-754.

    Article  Google Scholar 

  23. Pullan W. A memetic genetic algorithm for the vertex p-center problem. Evolutionary Computation, 2008, 16(3): 417-436.

    Article  Google Scholar 

  24. Laguna M, Marti R. GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS Journal on Computing, 1999, 11(1): 44-52.

    Article  MATH  Google Scholar 

  25. Aiex R M, Resende M G C, Pardalos P M, Toraldo G. GRASP with path relinking for three-index assignment. INFORMS Journal on Computing, 2005, 17(2): 224-247.

    Article  MathSciNet  MATH  Google Scholar 

  26. Ribeiro C C, Uchoa E,Werneck R F. A hybrid GRASP with perturbations for the steiner problem in graphs. INFORMS Journal on Computing, 2002, 14(3): 228-246.

    Article  MathSciNet  MATH  Google Scholar 

  27. Aiex R M, Binato S, Resende M G C. Parallel GRASP with path-relinking for job shop scheduling. Parallel Computing, 2003, 29(4): 393-430.

    Article  MathSciNet  Google Scholar 

  28. Oliveira C A S, Pardalos P M, Resende M G C. GRASP with path-relinking for the quadratic assignment problem. In Proc. the 3rd Int Workshop on Experimental and Efficient Algorithms, May 2004, pp.356-368.

  29. Festa P, Pardalos P M, Resende M G C, Ribeiro C C. Randomized heuristics for the max-cut problem. Optimization Methods and Software, 2002, 17(6): 1033-1058.

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang W Q, Lv Z P, Shi H. Growth algorithm for finding low energy configurations of simple lattice proteins. Physical Review E, 2005, 72(1): 016704.

    Article  Google Scholar 

  31. Zou P, Zhou Z, Wan Y Y, Chen G L, Gu J. New metaheuristic for combinatorial optimization problems: Intersection based scaling. Journal of Computer Science and Technology, 2004, 19(6): 740-751.

    Article  MathSciNet  Google Scholar 

  32. Xu H Y, Lv Z, Cheng T C E. Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness. Journal of Scheduling, 2014, 17(3): 271-287.

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu H Y, Lv Z P, Yin A H, Shen L J, Buscher U. A study of hybrid evolutionary algorithms for single machine scheduling problem with sequence-dependent setup times. Computers & Operations Research, 2014, 50: 47-60.

    Article  MathSciNet  MATH  Google Scholar 

  34. Glover F. Tabu search-part I. ORSA Journal on Computing, 1989, 1(3): 190-206.

    Article  MathSciNet  MATH  Google Scholar 

  35. HuangW Q, Zhang D F, Wang H X. An algorithm based on tabu search for satisfiability problem. Journal of Computer Science and Technology, 2002, 17(3): 340-346.

    Article  MathSciNet  Google Scholar 

  36. Lai X J, Lv Z P. Multistart iterated tabu search for bandwidth coloring problem. Computers & Operations Research, 2013, 40(5): 1401-1409.

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu J, Rosin P L, Sun X F, Martin R R. Improving shape from shading with interactive tabu search. Journal of Computer Science and Technology, 2016, 31(3): 450-462.

    Article  Google Scholar 

  38. Glover F. Tabu search and adaptive memory programming—Advances, applications and challenges. In Interfaces in Computer Science and Operations Research. Operations Research/Computer Science Interfaces Series, Barr R S, Helgason R V, Kennington J L (eds.), Springer 1997, pp.1-75.

  39. Glover F. Multi-start and strategic oscillation methods— Principles to exploit adaptive memory. In Computing Tools for Modeling Optimization and Simulation Operations Research/Computer Science Interfaces Series, Laguna M, Velarde J L G (eds.), Springer, 2000 pp.1-23.

  40. Glover F, Laguna M, Martí R. Fundamentals of scatter search and path relinking. Control and Cybernetics, 2000, 29(3): 653-684.

    MathSciNet  MATH  Google Scholar 

  41. Peng B, Lv Z P, Cheng T C E. A tabu search/path relinking algorithm to solve the job shop scheduling problem. Computers & Operations Research, 2015, 53: 154-164.

    Article  MathSciNet  MATH  Google Scholar 

  42. Reinelt G. TSPLIB—A traveling salesman problem library. ORSA Journal on Computing, 1991, 3(4): 376-384.

    Article  MathSciNet  MATH  Google Scholar 

  43. Floyd R W. Algorithm 97: Shortest path. Communications of the ACM, 1962, 5(6): Article No. 345.

  44. Louren¸co H R, Martin O C, Stützle T. Iterated local search. In Handbook of Metaheuristics, Glover F, Kochenberger G A (eds.), Springer, 2003, pp.320-353.

  45. Boese K D. Cost versus distance in the traveling salesman problem. Technical report TR-950018 UCLA CS Department, 1995.

  46. Stützle T, Dorigo M. ACO algorithms for the quadratic assignment problem. In New Ideas in Optimization, Corne D, Dorigo M, Glover F et al. (eds.), McGraw-Hill Ltd., 1999, pp.33-50.

  47. Merz P, Freisleben B. Fitness landscapes, memetic algorithms, and greedy operators for graph bipartitioning. Evolutionary Computation, 2000, 8(1): 61-91.

    Article  Google Scholar 

  48. Misevicius A. An improved hybrid genetic algorithm: New results for the quadratic assignment problem. Knowledge-Based Systems, 2004, 17(2/3/4): 65-73.

  49. Benlic U, Hao J K. A multilevel memetic approach for improving graph k-partitions. IEEE Trans. Evolutionary Computation, 2011, 15(5): 624-642.

    Article  Google Scholar 

  50. Geiger M J. On operators and search space topology in multi-objective flow shop scheduling. European Journal of Operational Research, 2007, 181(1): 195-206.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wen Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, AH., Zhou, TQ., Ding, JW. et al. Greedy Randomized Adaptive Search Procedure with Path-Relinking for the Vertex p-Center Problem. J. Comput. Sci. Technol. 32, 1319–1334 (2017). https://doi.org/10.1007/s11390-017-1802-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-017-1802-3

Keywords

Navigation