Skip to main content
Log in

Symmetry in world trade network

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Symmetry of the world trade network provides a novel perspective to understand the world-wide trading system. However, symmetry in the world trade network (WTN) has been rarely studied so far. In this paper, the authors systematically explore the symmetry in WTN. The authors construct WTN in 2005 and explore the size and structure of its automorphism group, through which the authors find that WTN is symmetric, particularly, locally symmetric to a certain degree. Furthermore, the authors work out the symmetric motifs of WTN and investigate the structure and function of the symmetric motifs, coming to the conclusion that local symmetry will have great effect on the stability of the WTN and that continuous symmetry-breakings will generate complexity and diversity of the trade network. Finally, utilizing the local symmetry of the network, the authors work out the quotient of WTN, which is the structural skeleton dominating stability and evolution of WTN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl, Symmetry, Princeton University Press, Princeton, N. J., 1952.

    MATH  Google Scholar 

  2. E. P. Wigner, Symmetries and Reflections: Scientific Essays, MIT Press, Cambridge, MA, 1970.

    Google Scholar 

  3. A. Zee, Fearful Symmetry: The Search for Beauty in Modern Physics, Princeton Univ Press, Princeton, 1999.

    Google Scholar 

  4. K. Mainzer, Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science, World Scientific, Singapore, 2005.

    MATH  Google Scholar 

  5. M. Golubitsky and I. Stewart, The Symmetry Perspective, Progress in Mathematics, Birkhauser Verlag, Basel, 2002.

    Google Scholar 

  6. G. Xu, J. Gu, and H. Che, System Science (in Chinese), Shanghai Scientific and Technological Education Publishing House, Shanghai, 2000.

    Google Scholar 

  7. R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Rev. Modern Phys., 2002, 74(1): 47–97.

    Article  MathSciNet  Google Scholar 

  8. R. Albert, H. Jeong, and A. L. Barabási, Internet: Diameter of the world-wide web, Nature, 1999, 401: 130–131.

    Article  Google Scholar 

  9. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Classes of small-world networks, in Proc. Natl. Acad. Sci. USA, 2000, 97(21): 11149–11152.

    Article  Google Scholar 

  10. A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 1999, 286(5439): 509–512.

    Article  MathSciNet  Google Scholar 

  11. P. J. Cameron, Permutation Groups (London Mathematical Society Student Texts), vol. 45, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  12. A. H. Dekker and B. Colbert, The symmetry ratio of a network, in Proceedings of the 2005 Australasian Symposium on Theory of Computing, 2005: 13–20.

  13. W. Dicks and M. J. Dunwoody, Groups Acting on Graphs, Cambridge Studies in Advanced Mathematics, vol. 17, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  14. P. Holme, Detecting degree symmetries in networks, Phys. Rev. E, 2006, 74(3): 036107.

    Article  Google Scholar 

  15. J. Lauri and R. Scapellato, Topics in Graph Automorphisms and Reconstruction, London Mathematical Society Student Texts, vol. 54, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  16. B. D. MacArthur and James W. Anderson, Symmetry and self-organization in complex systems, 2006. ArXiv: cond-mat/0609274 v1.

  17. B. D. MacArthur, R. J. Sánchez-García, and J. W. Anderson, Symmetry in complex networks, Discrete Applied Mathematics, 2008, 156(18): 3525–3531.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, Washington, DC, 1997.

  19. L. H. Soicher, Computing with Graphs and Groups, in Topics in Algebraic Graph Theory (ed. by L. W. Beineke and R. J. Wilson), Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  20. W. Kocay, Groups & Graphs, a Macintosh application for graph theory, J. Combin. Math. Combin. Comput., 1988, 3: 195–206.

    MATH  MathSciNet  Google Scholar 

  21. B. Bollobas, Random Graphs, Seconded, Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  22. M. A. Serrano and M. Boguñá, Topology of the world trade web, Physical Review E, 2003, 68(1): 015101(R).

    Article  Google Scholar 

  23. D. Garlaschelli and M. Loffredo, Fitness-dependent topological properties of the world trade web, Physical Review Letters, 2004, 93(18): 188701.

    Article  Google Scholar 

  24. D. Garlaschelli and M. Loffredo, Structure and evolution of the world trade network, Physical A, 2005, 355(1): 138–144.

    Article  MathSciNet  Google Scholar 

  25. X. Li, Y. Y. Jin, and G. Chen, Complexity and synchronization of the world trade web, Physical A, 2003, 328: 287–296.

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Fagiolo, J. Reyes, and S. Schiavo, On the topological properties of the world trade web: A weighted network analysis, Physical A, 2008, 387(15): 3868–3873.

    Article  Google Scholar 

  27. V. Batagelj and A. Mrvar, Pajek-program for large network analysis, Connections, 1998, 21: 47–57.

    Google Scholar 

  28. Import/Export databases are publicly available at the address: http://www.intracen.org/menus/countries.htm.

  29. B. D. McKay, Practical graph isomorphism, Congr. Numer., 1981, 30: 45–87.

    MathSciNet  Google Scholar 

  30. J. Lauri and R. Scapellato, Topics in Graph Automorphisms and Reconstruction, London Mathematical Society Student Texts, vol. 54, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  31. Y. Xiao, M. Xiong, W. Wang, and H. Wang, Emergence of Symmetry in Complex Networks, Physical Review E, 2008, 77(6): 066108.1–066108.10.

    Article  Google Scholar 

  32. Y. Xiao, B. D. MacArthur, H. Wang, M. Xiong, and W. Wang, Quotient networks: Structural skeletons of complex systems, Physical Review E, 2008, 78(4): 046102.1–046102.7.

    Article  Google Scholar 

  33. Y. H. Xiao, W. T. Wu, H. Wang, M. Xiong, and W. Wang, Symmetry-based structure entropy of complex networks, Physical A, 2008, 387: 2611–2619.

    Article  Google Scholar 

  34. M. Klin, Ch. Rcker, G. Rcker, and G. Tinhofer, Algebraic Combinatorics in Mathematical Chemistry, Methods and Algorithms, I. Permutation Groups and Coherent (Cellular) Algebras, Technische Universiät München, München, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 70371070; Shanghai Leading Academic Discipline Project under Grant No. S30504; and Key Project for Fundamental Research of STCSM under Grant No. 06JC14057.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Yan, G. & Xiao, Y. Symmetry in world trade network. J Syst Sci Complex 22, 280–290 (2009). https://doi.org/10.1007/s11424-009-9163-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-009-9163-9

Key words

Navigation