Skip to main content
Log in

On Existence and Uniqueness of Random Impulsive Differential Equations

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper studies existence and uniqueness for random impulsive differential equations. The authors first generalize a random fixed point theorem of Schaefer’s type. Then the authors shall rely on the generalized Schaefer’s type random fixed point theorem to discuss the existence of the system. In addition, the authors study the existence and uniqueness of random impulsive differential equations by applying random Banach fixed point theorem and obtain some less conservative results. Finally, an example is given to illustrate the effectiveness of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakshmikantham V, Bainov D D, and Simeonov P S, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

    Book  MATH  Google Scholar 

  2. Ouahab A, Local and global existence and uniqueness results for impulsive functional differential equations with multiple delay, J. Math. Anal. Appl., 2006, 323: 456–472.

    Article  MathSciNet  MATH  Google Scholar 

  3. Shen J and Liu X, Global existence results for impulsive differential equations, J. Math. Anal. Appl., 2006, 314: 546–557.

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu X and Ballinger G, Uniform asymptotic stability of impulsive delay differential equations, Comput. Math. Appl., 2001, 41: 903–915.

    Article  MathSciNet  MATH  Google Scholar 

  5. Li Z, A delayed ratio-dependent predator-prey system with stage-structured and impulsive effect, Journal of Systems Science and Complexity, 2011, 24: 1118–1129.

    Article  MathSciNet  Google Scholar 

  6. Wu H and Sun J, P-moment stability of stochastic differential equations with impulsive jump and Markovian switching, Automatica, 2006, 42: 1753–1759.

    Article  MathSciNet  MATH  Google Scholar 

  7. Agarwal R P, Bhaskar T G, and Perera K, Some results for impulsive problems via Morse theory, J. Math. Anal. Appl., 2014, 409: 752–759.

    Article  MathSciNet  MATH  Google Scholar 

  8. Niu Y, Liao D, and Wang P, Stochastic asymptotical stability for stochastic impulsive differential equations and it is application to chaos synchronization, Commun. Nonlinear Sci. Numer. Simul., 2012, 17: 505–512.

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu B, Stability of solutions for stochastic impulsive systems via comparison approach, IEEE Trans. Autom. Control, 2008, 53: 2128–2133.

    Article  MathSciNet  Google Scholar 

  10. Li P, Cao J, and Wang Z, Robust impulsive synchronization of coupled delayed neural networks with uncertainties, Physica A, 2007, 373: 261–272.

    Article  Google Scholar 

  11. Chen L and Sun J, Nonlinear boundary value problem of first order impulsive functional differential equations, J. Math. Anal. Appl., 2006, 318: 726–741.

    Article  MathSciNet  MATH  Google Scholar 

  12. Li C, Sun J, and Sun R, Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects, J. Frankl. Inst.-Eng. Appl. Math., 2010, 347: 1186–1198.

    Article  MathSciNet  MATH  Google Scholar 

  13. Soong T T, Random differential equations in science and engineering, Academic Press, New York, 1973.

    MATH  Google Scholar 

  14. Dhage B C, A random version of Schaefer’s fixed point theorem with applications to functional random integral equations, Tamkang J. Math., 2004, 35: 197–205.

    MathSciNet  MATH  Google Scholar 

  15. Itho S, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 1979, 67: 261–273.

    Article  MathSciNet  Google Scholar 

  16. Padgett W J, Schultz G, and Tsokos C P, A random differential equation approach to the probability distribution of BOD and DO in streams, SIAM J. Appl. Math., 1977, 32: 467–483.

    Article  MATH  Google Scholar 

  17. Cortes J C, Jodar L, Company R, and Villafuerte L, Solving Riccati time-dependent models with random quadratic coefficients, Appl. Math. Lett., 2011, 24: 2193–2196.

    Article  MathSciNet  MATH  Google Scholar 

  18. Strand J L, Stochastic Ordinary Differential Equations, Ph.D. Thesis, Univ. of California, Berkeley, California, 1967.

    Google Scholar 

  19. Strand J L, Random ordinary differential equations, J. Differ. Equ., 1970, 7: 538–553.

    Article  MathSciNet  MATH  Google Scholar 

  20. Mao X, Stability of stochastic differential equations with Markovian switching, Stoch. Process. Their Appl., 1999, 79: 45–67.

    Article  MathSciNet  MATH  Google Scholar 

  21. Sakthivel R, Revathi P, and Ren Y, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal.-Theory Methods Appl., 2013, 81: 70–86.

    Article  MathSciNet  MATH  Google Scholar 

  22. El Karoui N, Peng S, and Quenez M C, Backward stochastic differential equations in finance, Math. Financ., 1997, 7: 1–71.

    Article  MathSciNet  MATH  Google Scholar 

  23. Stanescu D and Chen-Charpentier B M, Random coefficient differential equation models for bacterial growth, Math. Comput. Model., 2009, 50: 885–895.

    Article  MathSciNet  MATH  Google Scholar 

  24. Charrier J, Strong and weak error estimates for elliptic partial differential equations with random coefficients, SIAM J. Numer. Anal., 2012, 50: 216–246.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang F, Stochastic maximum principle for mixed regular-singular control problems of forwardbackward systems, Journal of Systems Science and Complexity, 2013, 26(6): 886–901.

    Article  MathSciNet  MATH  Google Scholar 

  26. Bharucha-Reid A T, Random Integral Equations, Academic Press, New York, 1972.

    MATH  Google Scholar 

  27. Bharucha-Reid A T, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 1976, 82: 641–657.

    Article  MathSciNet  MATH  Google Scholar 

  28. Himmelberg C J, Measurable relations, Fund. Math., 1975, 87: 53–72.

    MathSciNet  MATH  Google Scholar 

  29. Deimling K, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  30. Martelli M, A Rothe’s type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital., 1975, 4: 70–76.

    MathSciNet  MATH  Google Scholar 

  31. Kuratowski K and Ryll-Nardzewski C, A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1965, 13: 397–403.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitao Sun.

Additional information

This research was supported by the NSF of China under Grant No. 61174039.

This paper was recommended for publication by Editor LÜ Jinhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Sun, J. On Existence and Uniqueness of Random Impulsive Differential Equations. J Syst Sci Complex 29, 300–314 (2016). https://doi.org/10.1007/s11424-015-4018-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-015-4018-z

Keywords

Navigation