Skip to main content
Log in

Resultant elimination via implicit equation interpolation

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

It is well known that resultant elimination is an effective method of solving multivariate polynomial equations. In this paper, instead of computing the target resultants via variable by variable elimination, the authors combine multivariate implicit equation interpolation and multivariate resultant elimination to compute the reduced resultants, in which the technique of multivariate implicit equation interpolation is achieved by some high probability algorithms on multivariate polynomial interpolation and univariate rational function interpolation. As an application of resultant elimination, the authors illustrate the proposed algorithm on three well-known unsolved combinatorial geometric optimization problems. The experiments show that the proposed approach of resultant elimination is more efficient than some existing resultant elimination methods on these difficult problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kapur D and Mundy J L, Wu’s method and its application to perspective viewing, Artif. Intell., 1988, 37(1–3): 15–36.

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang D M, On Wu’s method for proving constructive geometric theorems, Proceedings of the 11th International Joint Conference on Artificial Intelligence, Detroit, 1989, 419–424.

    Google Scholar 

  3. Buchberger B, Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput., 2006, 41(3–4): 475–511.

    Article  MathSciNet  MATH  Google Scholar 

  4. Lazard D, Gröbner-Bases, gaussian elimination and resolution of systems of algebraic equations, Proceedings of the European Computer Algebra Conference on Computer Algebra (ed. by Van Hulzen J A), London, 1983, 146–156.

    Google Scholar 

  5. Faugère J C, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra, 1999, 139(1): 61–88.

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun Y and Wang D K, A new proof for the correctness of the F5 algorithm, Sci. China. Math., 2013, 56(4): 745–756.

    Article  MathSciNet  MATH  Google Scholar 

  7. Eder C and Perry J, F5C: A variant of Faugère’s F5 algorithm with reduced Gröbner bases, J. Symb. Comput., 2010, 45(12): 1442–1458.

    Article  MathSciNet  MATH  Google Scholar 

  8. Faugère J C, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, New York, 2002, 75–83.

    Chapter  Google Scholar 

  9. Nicolas C, Alexander K, Jacques P, et al., Efficient algorithms for solving overdefined systems of multivariate polynomial equations, Proceedings of the 19th International Conference on Theory and Application of Cryptographic Techniques, Bruges, 2000, 392–407.

    Google Scholar 

  10. Gao S H, Guan Y H, and Frank V IV, A new incremental algorithm for computing Gröbner bases, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, Munich, 2010, 13–19.

    Chapter  Google Scholar 

  11. Kapur D, Sun Y, and Wang D K, An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial system, J. Symb. Comput., 2013, 49: 49–27.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kapur D, Sun Y, and Wang D K, An efficient method for computing comprehensive Gröbner bases, J. Symb. Comput., 2013, 52: 52–124.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin M, Li X L, and Wang D M, A new algorithmic scheme for computing characteristic sets, J. Symb. Comput., 2013, 50: 50–431.

    Article  MathSciNet  Google Scholar 

  14. Chtcherba A D and Kapur D, Exact resultants for corner-cut unmixed multivariate polynomial systems using the Dixon formulation, J. Symb. Comput., 2003, 36(3): 289–315.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chionh E W, Zhang M, and Goldman R N, Fast computation of the Bézout and Dixon resultant matrices, J. Symb. Comput., 2002, 33(1): 13–29.

    Article  MathSciNet  MATH  Google Scholar 

  16. Manocha D and Canny J F, Multipolynomial resultant algorithms, J. Symb. Comput., 1993, 15: 15–99.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kapur D, Tushar S, and Yang L, Algebraic and geometric reasoning using Dixon resultants, Proceedings of the International Symposium on Symbolic and Algebraic Computation, Oxford, 1994, 99–107.

    Chapter  Google Scholar 

  18. Cox D, Little J, and O’shea D, Ideals, Varieties, and Algorithms, Springer-Verlag, New York, 1992.

    Book  MATH  Google Scholar 

  19. Canny J F, Kaltofen E, and Yagati L, Solving systems of non-linear polynomial equations faster, Proceedings of the International Symposium on Symbolic and Algebraic Computation, New York, 1998, 121–128.

    Google Scholar 

  20. D’Andrea C, Macaulay style formulas for sparse resultants, T. Am. Math. Soc., 2002, 354(7): 2595–2629.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bernard M and Victor P, Solving special polynomial systems by using structured matrices and algebraic residues, Found. Comput. Math., 1997, 287–304.

    Google Scholar 

  22. Saxena T, Efficient variable elimination using resultants, PhD thesis, State University of New York, Albany, 1996.

    Google Scholar 

  23. Cheng J S and Jin K, A generic position based method for real root isolation of zero-dimensional polynomial systems, J. Symb. Comput., 2015, 68: 68–204.

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen L Y and Zeng Z B, Parallel computation of determinants of matrices with multivariate polynomial entries, Science China Information Sciences, 2012, 56(11): 1–16.

    Article  Google Scholar 

  25. Zippel R, Probabilistic algorithms for sparse polynomials, Proceedings of the International Symposium on Symbolic and Algebraic Computation, London, 1979, 216–226.

    Chapter  Google Scholar 

  26. Ben-Or M and Tiwari P, A deterministic algorithm for sparse multivariate polynomial interpolation, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, New York, 1988, 301–309.

    Google Scholar 

  27. Kaltofen E and Lee WS, Early termination in sparse interpolation algorithms, J. Symb. Comput., 2003, 36(3–4): 365–400.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaltofen E, Lee W S, and Lobo A A, Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm, Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, St. Andrews, 2000, 192–201.

    Chapter  Google Scholar 

  29. Cuyt A and Lee W S, Sparse interpolation of multivariate rational functions, Theor. Comput. Sci., 2011, 412(16): 1445–1456.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kaltofen E and Yang Z F, On exact and approximate interpolation of sparse rational functions, Proceedings of the International Symposium on Symbolic and Algebraic Computation, New York, 2007, 203–210.

    Google Scholar 

  31. Mehlhorn K, Lecture 10: The Sylvester Resultant, Max Planck Institute for Informatics, German, Springer, 2010.

    Google Scholar 

  32. Schwartz J T, Fast probabilistic algorithms for verification of polynomial identities, J. ACM., 1980, 27: 27–701.

    Article  MathSciNet  MATH  Google Scholar 

  33. Weisstein E W, First Morley Triangle, from MathWorld — A Wolfram Web Resource, http://mathworld.wolfram.com/FirstMorleyTriangle.html.

  34. Zirakzadeh A, A property of a triangle inscribed in a convex curve, Can. J. Math., 1964, 1(4): 777–786.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Tang.

Additional information

This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 11471209, 61321064 and 61361136002, the Innovation Program of Shanghai Municipal Education Commission under Grant No. 14ZZ046.

This paper was recommended for publication by Editor ZHANG Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Yang, Z. & Zeng, Z. Resultant elimination via implicit equation interpolation. J Syst Sci Complex 29, 1411–1435 (2016). https://doi.org/10.1007/s11424-016-4159-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-016-4159-8

Keywords

Navigation