Skip to main content
Log in

Maximum Principle of Optimal Stochastic Control with Terminal State Constraint and Its Application in Finance

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers the optimal control problem for a general stochastic system with general terminal state constraint. Both the drift and the diffusion coefficients can contain the control variable and the state constraint here is of non-functional type. The author puts forward two ways to understand the target set and the variation set. Then under two kinds of finite-codimensional conditions, the stochastic maximum principles are established, respectively. The main results are proved in two different ways. For the former, separating hyperplane method is used; for the latter, Ekeland’s variational principle is applied. At last, the author takes the mean-variance portfolio selection with the box-constraint on strategies as an example to show the application in finance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kushner H J, On the stochastic maximum principle: Fixed time of control, Journal of Mathematical Analysis and Applications, 1965, 11: 78–92.

    Article  MathSciNet  MATH  Google Scholar 

  2. Kushner H J, Necessary conditions for continuous parameter stochastic optimization problems, SIAM Journal on Control, 1972, 10(3): 550–565.

    Article  MathSciNet  MATH  Google Scholar 

  3. Kushner H J and Schweppe F C, A maximum principle for stochastic control systems, Journal of Mathematical Analysis and Applications, 1964, 8(2): 287–302.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bismut J M, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 1973, 44(2): 384–404.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bismut J M, An introductory approach to duality in optimal stochastic control, SIAM Review, 1978, 20(1): 62–78.

    Article  MathSciNet  MATH  Google Scholar 

  6. Haussmann U G, General necessary conditions for optimal control of stochastic systems, Stochastic Systems: Modeling, Identification and Optimization, 1978, 68(2): 30–48.

    Google Scholar 

  7. Bensoussan A, Lectures on stochastic control, Nonlinear Filtering and Stochastic Control, Springer Berlin, Heidelberg, 1983, 1–62.

    Google Scholar 

  8. Bensoussan A, Stochastic maximum principle for distributed parameter systems, Journal of the Franklin Institute, 1983, 315(5–6): 387–406.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bensoussan A, Perturbation Methods in Optimal Control, Volume 5, John Wiley & Sons Inc, 1988.

    MATH  Google Scholar 

  10. Peng S, A general stochastic maximum principle for optimal control problems, SIAM Journal on Control and Optimization, 1990, 28(4): 966–979.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dokuchaev N and Zhou X Y, Stochastic controls with terminal contingent conditions, Journal of Mathematical Analysis and Applications, 1999, 238(1): 143–165.

    Article  MathSciNet  MATH  Google Scholar 

  12. Framstad N C, Øksendal B, and Sulem A, Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance, Journal of Optimization Theory and Applications, 2004, 121(1): 77–98.

    Article  MathSciNet  MATH  Google Scholar 

  13. Yong J M, Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions, SIAM Journal on Control and Optimization, 2010, 48(6): 4119–4156.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wu Z, A general maximum principle for optimal control of forward-backward stochastic systems, Automatica, 2013, 49(5): 1473–1480.

    Article  MathSciNet  MATH  Google Scholar 

  15. Buckdahn R, Djehiche B, and Li J, A general stochastic maximum principle for SDEs of meanfield type, Applied Mathematics & Optimization, 2011, 64(2): 197–216.

    Article  MathSciNet  MATH  Google Scholar 

  16. HuM S and Ji S L, Stochastic maximum principle for stochastic recursive optimal control problem under volatility ambiguity, SIAM Journal on Control and Optimization, 2016, 54(2): 918–945.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bielecki T R, Jin H Q, Pliska S R, et al., Continuous-time mean-varianve portofolio selection with bankruptcy prohibition, Mathematical Finance, 2005, 15(2): 213–244.

    Article  MathSciNet  MATH  Google Scholar 

  18. Karatzas I and Shreve S E, Methods of Mathematical Finance, Springer, New York, 1998.

    Book  MATH  Google Scholar 

  19. Yong J M and Zhou X Y, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer Science & Business Media, 1999.

    Book  MATH  Google Scholar 

  20. Bonnans J F and Silva F J, First and second order necessary conditions for stochastic optimal control problems, Applied Mathematics & Optimization, 2012, 65(3): 403–439.

    Article  MathSciNet  MATH  Google Scholar 

  21. Backhoff J and Silva F, Some sensitivity results in stochastic optimal control: A Lagrange multiplier point of view, Eprint arXiv: 1404.0586, 2014.

  22. Ji S L and Zhou X Y, A maximum principle for stochastic optimal control with terminal state constraints, and its applications, Communications in Information & Systems, 2006, 6(4): 321–338.

    Article  MathSciNet  MATH  Google Scholar 

  23. Li X J and Yao Y L, Maximum principle of distributed parameter systems with time lags, Distributed Parameter Systems, Lecture Notes in Control and Information Sciences, 1985, 75: 410–427.

    Article  MATH  Google Scholar 

  24. Fattorini H O, The maximum principle for nonlinear nonconvex systems in infinite dimensional spaces, Distributed Parameter Systems, Springer-Verlag, 1985, 162–178.

    Chapter  Google Scholar 

  25. Li X J and Yong J M, Necessary conditions for optimal control of distributed parameter systems, SIAM Journal on Control and Optimization, 1991, 29(4): 895–908.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou X Y, Maximum principle of stochastic controlled systems of functional type, Acta Mathematica Sinica, English Series, 1991, 7(3): 193–204.

    MathSciNet  Google Scholar 

  27. Hu Y, Maximum principle of optimal control for Markov processes, Acta Mathematica Sinica, 1990, 33: 43–56.

    MathSciNet  MATH  Google Scholar 

  28. Clarke F H, Optimization and Nonsmooth Analysis, Society for Industrial and Applied Mathematics, Wiley, New York, 1990, 847–853.

    Book  Google Scholar 

  29. Ekeland I, On the variational principle, Journal of Mathematical Analysis and Applications, 1974, 47(2): 324–353.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ekeland I, Nonconvex minimization problems, Bulletin of the American Mathematical Society, 1979, 1(3): 443–474.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor TANG Shanjian for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhuo.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 11171076, and by Science and Technology Commission, Shanghai Municipality under Grant No. 14XD1400400.

This paper was recommended for publication by Editor DI Zengru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, Y. Maximum Principle of Optimal Stochastic Control with Terminal State Constraint and Its Application in Finance. J Syst Sci Complex 31, 907–926 (2018). https://doi.org/10.1007/s11424-018-6212-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-018-6212-2

Keywords

Navigation