Skip to main content
Log in

Adjusted Empirical Likelihood Estimation of Distribution Function and Quantile with Nonignorable Missing Data

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers the estimation problem of distribution functions and quantiles with nonignorable missing response data. Three approaches are developed to estimate distribution functions and quantiles, i.e., the Horvtiz-Thompson-type method, regression imputation method and augmented inverse probability weighted approach. The propensity score is specified by a semiparametric exponential tilting model. To estimate the tilting parameter in the propensity score, the authors propose an adjusted empirical likelihood method to deal with the over-identified system. Under some regular conditions, the authors investigate the asymptotic properties of the proposed three estimators for distribution functions and quantiles, and find that these estimators have the same asymptotic variance. The jackknife method is employed to consistently estimate the asymptotic variances. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Little R J and Rubin D B, Statistical Analysis with Missing Data, 2nd Edition, Wiley, New York, 2002.

    Book  MATH  Google Scholar 

  2. Kim J K and Shao J, Statistical Methods for Handling Incomplete Data, CRC Press, 2013.

    MATH  Google Scholar 

  3. Qin J, Leung D, Shao J, Estimation with survey data under nonignorable nonresponse or informative sampling, Journal of the American Statistical Association, 2002, 97(457): 193–200.

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhao J and Shao J, Approximate conditional likelihood for generalized linear models with general missing data mechanism, Journal of Systems Science and Complexity, 2017, 30(1): 139–153.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kim J K and Yu C L, A semiparametric estimation of mean functionals with nonignorable missing data, Journal of the American Statistical Association, 2011, 106(493): 157–165.

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhao H, Zhao P Y, and Tang N S, Empirical likelihood inference for mean functionals with nonignorably missing response data, Computational Statistics and Data Analysis, 2013, 66(66): 101–116.

    Article  MathSciNet  Google Scholar 

  7. Tang N, Zhao P, and Zhu H, Empirical likelihood for estimating equations with nonignorably missing data, Statistica Sinica, 2014, 24(2): 723.

    MathSciNet  MATH  Google Scholar 

  8. Shao J and Wang L, Semiparametric inverse propensity weighting for nonignorable missing data, Biometrika, 2016, 103(1): 175–187.

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang S, Shao J, and Kim J K, An instrumental variable approach for identification and estimation with nonignorable nonresponse, Statistica Sinica, 2014, 24(3): 1097–1116.

    MathSciNet  MATH  Google Scholar 

  10. Tang G, Little R J, and Raghunathan T E, Analysis of multivariate missing data with nonignorable nonresponse, Biometrika, 2003, 90(4): 747–764.

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhao J and Shao J, Semiparametric Pseudo-likelihoods in generalized linear models with nonignorable missing data, Journal of the American Statistical Association, 2015, 110(512): 1577–1590.

    Article  MathSciNet  MATH  Google Scholar 

  12. Miao W, Ding P, and Geng Z, Identifiability of normal and normal mixture models with nonignorable missing data, Journal of the American Statistical Association, 2016, 111(516): 1673–1683.

    Article  MathSciNet  Google Scholar 

  13. Fang F and Shao J, Model selection with nonignorable nonresponse, Biometrika, 2016, 103(4): 861–874.

    Article  MathSciNet  Google Scholar 

  14. Nadaraya E A, Some new estimates for distribution functions, Theory of Probability and Its Applications, 1964, 9(3): 497–500.

    Article  MathSciNet  MATH  Google Scholar 

  15. Nadaraya E A, On estimating regression, Theory of Probability and Its Applications, 1964, 9(1): 141–142.

    Article  MATH  Google Scholar 

  16. Watson G S, Smooth regression analysis, Sankhya: The Indian Journal of Statistics Series A, 1964, 26(4): 359–372.

    MathSciNet  MATH  Google Scholar 

  17. Chen J and Wu C, Estimation of distribution function and quantiles using model-calibrated pseudo empirical likelihood method, Statistica Sinica, 2002, 12(4): 1223–1239.

    MathSciNet  MATH  Google Scholar 

  18. Cheng P E and Chu C K, Kernel estimation of distribution functions and quantiles with missing data, Statistica Sinica, 1996, 6(1): 63–78.

    MathSciNet  MATH  Google Scholar 

  19. Liu X, Liu P, and Zhou Y, Distribution estimation with auxiliary information for missing data, Journal of Statistical Planning and Inference, 2011, 141(2): 711–724.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu Z, Follmann D A, and Qin J, Dimension reduced kernel estimation for distribution function with incomplete data, Journal of Statistical Planning and Inference, 2011, 141(9): 3084–3093.

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao P Y, Tang M L, and Tang N S, Robust estimation of distribution functions and quantiles with non-ignorable missing data, Canadian Journal of Statistics, 2013, 41(4): 575–595.

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen J, Variyath A M, and Abraham B, Adjusted empirical likelihood and its properties, Journal of Computational and Graphical Statistics, 2008, 17(2): 426–443.

    Article  MathSciNet  Google Scholar 

  23. Owen A B, Empirical Likelihood, CRC Press, Florida, 2001.

    Book  MATH  Google Scholar 

  24. Horvitz D G and Thompson D J, A generalization of sampling without replacement from a finite universe, Journal of the American Statistical Association, 1952, 47(260): 663–685.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kang J D Y and Schafer J L, Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data, Statistical Science, 2006, 22(4): 574–580.

    Article  MathSciNet  MATH  Google Scholar 

  26. Robins J M, Rotnitzky A, and Zhao L P, Estimation of regression coefficients when some regressors are not always observed, Journal of the American Statistical Association, 1994, 89(427): 846–866.

    Article  MathSciNet  MATH  Google Scholar 

  27. Qin J, Shao J, and Zhang B, Efficient and doubly robust imputation for covariate-dependent missing responses, Journal of the American Statistical Association, 2008, 103(482): 797–810.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ogburn E L, Rotnitzky A, and Robins J M, Doubly robust estimation of the local average treatment effect curve, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2015, 77(2): 373–396.

    Article  MathSciNet  Google Scholar 

  29. Chang T, Kott P S, Using calibration weighting to adjust for nonresponse under a plausible model, Biometrika, 2008, 95(3): 555–571.

    Article  MathSciNet  MATH  Google Scholar 

  30. Newey W K and Smith R J, Higher order properties of GMM and generalized empirical likelihood estimators, Econometrica, 2004, 72(1): 219–255.

    Article  MathSciNet  MATH  Google Scholar 

  31. Qin J and Lawless J, Empirical likelihood and general estimating equations, Annals of Statistics, 1994, 22(1): 300–325.

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu Y and Chen J, Adjusted empirical likelihood with high-order precision, Annals of Statistics, 2010, 38(3): 1341–1362.

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen X, Wan A T K, and Zhou Y, Efficient quantile regression analysis with missing observations, Journal of the American Statistical Association, 2015, 110(510): 723–741.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang Q, Linton O, and Härdle W, Semiparametric regression analysis with missing response at random, Journal of the American Statistical Association, 2004, 99(466): 334–345.

    Article  MathSciNet  MATH  Google Scholar 

  35. Shao J and Sitter R R, Bootstrap for imputed survey data, Journal of the American Statistical Association, 1996, 91(435): 1278–1288.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang D and Chen S X, Empirical likelihood for estimating equations with missing values, Annals of Statistics, 2009, 37(1): 490–517.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwen Ding.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11671349 and 11601195, the Scientific Research Innovation Team of Yunnan Province under Grant No. 2015HC028, and the Natural Science Foundation of Jiangsu Province of China under Grant No. BK20160289.

This paper was recommended for publication by Editor SHAO Jun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Tang, N. Adjusted Empirical Likelihood Estimation of Distribution Function and Quantile with Nonignorable Missing Data. J Syst Sci Complex 31, 820–840 (2018). https://doi.org/10.1007/s11424-018-6334-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-018-6334-6

Keywords

Navigation