Skip to main content
Log in

Speeding Up the GVW Algorithm via a Substituting Method

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The GVW algorithm is an efficient signature-based algorithm for computing Gröbner bases. In this paper, the authors consider the implementation of the GVW algorithm by using linear algebra, and speed up GVW via a substituting method. As it is well known that, most of the computing time of a Gröbner basis is spent on reductions of polynomials. Thus, linear algebraic techniques, such as matrix operations, have been used extensively to speed up the implementations. Particularly, one-direction (also called signature-safe) reduction is used in signature-based algorithms, because polynomials (or rows in matrices) with larger signatures can only be reduced by polynomials (rows) with smaller signatures. The authors propose a new method to construct sparser matrices for signature-based algorithms via a substituting method. Specifically, instead of only storing the original polynomials in GVW, the authors also record many equivalent but sparser polynomials at the same time. In matrix construction, denser polynomials are substituted by sparser equivalent ones. As the matrices get sparser, they can be eliminated more efficiently. Two specifical algorithms, Block-GVW and LMGVW, are presented, and their combination is the Sub-GVW algorithm. The correctness of the new proposed method is proved, and the experimental results demonstrate the efficiency of this new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchberger B, Ein Algorithmus zum auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal), PhD thesis, University of Innsbruck, Innsbruck, Austria, 1965; English translation in Journal of Symbolic Computation, 2006, 41(3–4): 475–511.

    MathSciNet  Google Scholar 

  2. Lazard D, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, Proc. EUROCAL’83, Lect. Notes in Comp. Sci., 1983, 162: 146–156.

    Article  Google Scholar 

  3. Faugère J C, A new effcient algorithm for computing Gröbner bases (F 4), J. Pure Appl. Algebra, 1999, 139(1–3): 61–88.

    Article  MathSciNet  MATH  Google Scholar 

  4. Courtois N, Klimov A, Patarin J, et al., Efficient algorithms for solving overdefined systems of multivariate polynomial equations, Proc. of EUROCRYPT’00, Lect. Notes in Comp. Sci., 2000, 1807: 392–407.

    Article  MATH  Google Scholar 

  5. Ding J, Buchmann J, Mohamed M S E, et al., Mutant XL, Proc. SCC’08, 2008, 16–22.

    Google Scholar 

  6. Faugère J C, A new effcient algorithm for computing Gröbner bases without reduction to zero (F 5), Proc. ISSAC’02, ACM Press, 2002, 75–82, Revised version downloaded from fgbrs. lip6.fr/jcf/Publications/index.html.

    Google Scholar 

  7. Eder C and Perry J, F5C: A variant of Faugère’s F5 algorithm with reduced Gröbner bases, J. Symb. Comput., 2010, 45(12): 1442–1458.

    Article  MATH  Google Scholar 

  8. Hashemi A and Ars G, Extended F5 criteria, J. Symb. Comput., 2010, 45(12): 1330–1340.

    Article  MATH  Google Scholar 

  9. Arri A and Perry J, The F5 criterion revised, J. Symb. Comput., 2011, 46: 1017–1029.

    Article  MathSciNet  MATH  Google Scholar 

  10. Eder C and Roune B H, Signature rewriting in Gröbner basis computation, Proc. ISSAC’13, ACM Press, New York, USA, 2013, 331–338.

    Google Scholar 

  11. Gao S H, Guan Y H, and Volny F, A new incremental algorithm for computing Gröbner bases, Proc. ISSAC’10, ACM Press, New York, USA, 2010, 13–19.

    Google Scholar 

  12. Gao S H, Volny F, and Wang M S, A new framework for computing Gröbner bases, Mathematics of Computation, 2016, 85(297): 449–465.

    Article  MathSciNet  MATH  Google Scholar 

  13. Sun Y and Wang D K, A generalized criterion for signature related Gröbner basis algorithms, Proc. ISSAC’11, ACM Press, 2011, 337–344.

    Google Scholar 

  14. Sun Y, Wang D K, Ma D X, et al., A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras, Proc. ISSAC’12, ACM Press, 2012, 351–358.

    Google Scholar 

  15. Boyer B, Eder C, Faugère J, et al., GBLA: Gröbner basis linear algebra package, ACM on International Symposium on Symbolic and Algebraic Computation, 2016.

    Google Scholar 

  16. Faugère J C and Lachartre S, Parallel Gaussian elimination for Gröbner bases computations in finite fields, Proc. PASCO, ACM Press, 2010, 89–97.

    Google Scholar 

  17. Albrecht M and Perry J, F4/5, Preprint, arXiv: 1006.4933v2 [math.AC], 2010.

    Google Scholar 

  18. Bardet M, Faugère J C, and Salvy B, On the complexity of the F5 Gröbner basis algorithm, arXiv: 1312.1655, 2013.

    MATH  Google Scholar 

  19. Faugère J C and Rahmany S, Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases, Proc. ISSAC’09, ACM Press, New York, USA, 2009, 151–158.

    Google Scholar 

  20. Roune B H and Stillman M, Practical Gröbner basis computation, Proc. ISSAC’12, ACM Press, 2012.

    Google Scholar 

  21. Boyer B, Eder C, Faugère J C, et al., GBLA: Gröbner basis linear algebra package, International Symposium on Symbolic and Algebraic Computation, 2016, 135–142.

    Chapter  Google Scholar 

  22. Sun Y, Lin D D, and Wang D K, An improvement over the GVW algorithm for inhomogeneous polynomial systems, Finite Fields and Their Applications, 2016, 41: 174–192.

    Article  MathSciNet  MATH  Google Scholar 

  23. Albrecht M and Bard G, The M4RI Library — Version 20130416, 2013, http://m4ri.sagemath.org.

    Google Scholar 

  24. Sun Y, Lin D D, and Wang D K, On implementing the symbolic preprocessing function over Boolean polynomial rings in Gröbner basis algorithms using linear algebra, Journal of Systems Science and Complexity, 2016, 29(3): 789–804.

    Article  MathSciNet  MATH  Google Scholar 

  25. Courtois N, Benchmarking algebraic, logical and constraint solvers and study of selected hard problems, 2013, http://www.cryptosystem.net/aes/hardproblems.html.

    Google Scholar 

  26. Bogdanov A, Knudsen L R, Leander G, et al., Present: An ultra-lightweight block cipher, Cryptographic Hardware and Embedded Systems — CHES, Springer, Berlin Heidelberg, 2007, 450–466.

    Google Scholar 

  27. Borghoff J, Knudsen L R, Leander G, et al., Slender-set differential cryptanalysis, Journal of Cryptology, 2013, 26(1): 11–38.

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu G Q and Jin C H, Differential cryptanalysis of PRESENT-like cipher, Designs, Codes and Cryptography, 2015, 76(3): 385–408.

    Article  MathSciNet  MATH  Google Scholar 

  29. Cannière C De, Trivium: A stream cipher construction inspired by block cipher design principles, International Conference on Information Security, Springer Berlin Heidelberg, 2006, 171–186.

    Chapter  Google Scholar 

  30. Huang Z and Lin D, Attacking bivium and trivium with the characteristic set method, Progress in Cryptology — AFRICACRYPT 2011, LNCS, 2011, 6737: 77–91.

    MATH  Google Scholar 

  31. Eibach T and Völkel G, Optimising Gröbner bases on Bivium, Mathematics in Computer Science 2010, 3(2): 159–172.

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang Z and Lin D, A new method for solving polynomial systems with noise over F22 and its applications in cold boot key recovery, Selected Areas in Cryptography, LNCS 7707, Windsor, Canada, 2013, 16–33.

    Chapter  Google Scholar 

  33. Faugère J C and Ars G, An algebraic cryptanalysis of nonlinear filter generators using Gröbner bases, TR No. 4739, INRIA, 2003.

    Google Scholar 

  34. Gao X S and Huang Z, Characteristic set algorithms for equation solving in finite fields, Journal of Symbolic Computation, 2012, 47(6): 655–679.

    Article  MathSciNet  MATH  Google Scholar 

  35. Buchberger B, A criterion for detecting unnecessary reductions in the construction of Gröbner basis, Proceedings of EUROSAM’79, Lect. Notes in Comp. Sci., Springer, Berlin, 1979, 72: 3–21.

    MATH  Google Scholar 

  36. Eder C, An analysis of inhomogeneous signature-based Gröbner basis computations, J. Symb. Comput., 2013, 59: 21–35.

    Article  MATH  Google Scholar 

  37. Gao S H, Volny F, and Wang M S, A new algorithm for computing Gröbner bases, Cryptology ePrint Archive, Report 2010/641, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Sun.

Additional information

This research is supported by the National Nature Science Foundation of China under Grant Nos. 61877058, 61872359, the Strategy Cooperation Project under Grant No. AQ-1701, and the CAS Project under Grant No. QYZDJ-SSW-SYS022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Sun, Y., Huang, Z. et al. Speeding Up the GVW Algorithm via a Substituting Method. J Syst Sci Complex 32, 205–233 (2019). https://doi.org/10.1007/s11424-019-8345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-8345-3

Keywords

Navigation