Skip to main content
Log in

The Algebro-Geometric Method for Solving Algebraic Differential Equations — A Survey

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper presents the algebro-geometric method for computing explicit formula solutions for algebraic differential equations (ADEs). An algebraic differential equation is a polynomial relation between a function, some of its partial derivatives, and the variables in which the function is defined. Regarding all these quantities as unrelated variables, the polynomial relation leads to an algebraic relation defining a hypersurface on which the solution is to be found. A solution in a certain class of functions, such as rational or algebraic functions, determines a parametrization of the hypersurface in this class. So in the algebro-geometric method the author first decides whether a given ADE can be parametrized with functions from a given class; and in the second step the author tries to transform a parametrization into one respecting also the differential conditions. This approach is relatively well understood for rational and algebraic solutions of single algebraic ordinary differential equations (AODEs). First steps are taken in a generalization to systems and to partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winkler F, Polynomial Algorithms in Computer Algebra, Springer-Verlag, Wien, 1996.

    Book  MATH  Google Scholar 

  2. Janet M, Leçons sur les systèmes d’équations aux derivées partielles, Gauthier-Villars, Paris, 1920.

    MATH  Google Scholar 

  3. Ritt J F, Differential Algebra, American Mathematical Society, 1950.

    Google Scholar 

  4. Kolchin E R, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.

    MATH  Google Scholar 

  5. Magid A R, Lectures on Differential Galois Theory, American Mathematical Society, 1997.

    Google Scholar 

  6. van der Put M and Singer M F, Galois Theory of Linear Differential Equations, 2nd Edition, Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

  7. Schwarz F, Algorithmic Lie Theory for Solving Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, Florida, 2008.

    MATH  Google Scholar 

  8. Behloul D and Cheng S S, Computation of all polynomial solutions of a class of nonlinear differential equations, Computing, 2006, 77: 163–177.

    Article  MathSciNet  MATH  Google Scholar 

  9. Behloul D and Cheng S S, Computation of rational solutions for a first-order nonlinear differential equation, Electronic Journal of Differential Equations (EJDE), 2011, 1–16.

    Google Scholar 

  10. Kovacic J, An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Computation, 1986, 2(1): 3–43.

    Article  MathSciNet  MATH  Google Scholar 

  11. Singer M F, Liouvillian solutions of n-th order homogeneous linear differential equations, Amer. J. Mathematics, 1981, 103(4): 661–682.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuchs L, Über Differentialgleichungen, deren Integrale feste Verzweigungspunkte besitzen, Sitzungsberichte der Königlich Preuβischen Akademie der Wissenschaften zu Berlin, 1884, 11(3): 251–273.

    Google Scholar 

  13. Poincaré H, Sur un théorème de M. Fuchs, Acta Math., 1885, 7: 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  14. Malmquist J, Sur les fonctions a un nombre fini des branches définies par les équations différentielles du premier ordre, Acta Math., 1920, 42(1): 317–325.

    Article  MathSciNet  Google Scholar 

  15. Eremenko A, Meromorphic solutions of algebraic differential equations, Russian Mathematical Surveys, 1982, 37(4): 61–95.

    Article  MathSciNet  MATH  Google Scholar 

  16. Matsuda M, First Order Algebraic Differential Equations — A Differential Algebraic Approach, LNM 804, Springer-Verlag, Berlin, 1980.

    Book  MATH  Google Scholar 

  17. Eremenko A, Rational solutions of first-order differential equations, Annales Academiae Scientiarum Fennicae, 1990, 23(1): 181–190.

    MathSciNet  MATH  Google Scholar 

  18. Hubert E, The general solution of an ordinary differential equation, Proc. Internat. Symposium on Symbolic and Algebraic Computation (ISSAC 1996), Ed. by Lakshman Y N, ACM Press, New York, 1996, 189–195.

    Google Scholar 

  19. Feng R and Gao X S, Rational general solutions of algebraic ordinary differential equations, Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation (ISSAC 04) Ed. by Gutierrez J, 155–162, ACM Press, New York, 2004.

    Chapter  Google Scholar 

  20. Feng R and Gao X S, A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs, J. Symbolic Computation, 2006, 41(7): 739–762.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen G and Ma Y, Algorithmic reduction and rational general solutions of first order algebraic differential equations, Differential Equations with Symbolic Computation, Eds. by Wang D and Zheng Z, 201–212, Birkhäuser, Basel, 2005.

    Chapter  Google Scholar 

  22. Ngô L X C and Winkler F, Rational general solutions of first order non-autonomous parametrizable ODEs, J. Symbolic Computation, 2010, 45(12): 1426–1441.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ngô L X C and Winkler F, Rational general solutions of planar rational systems of autonomous ODEs, J. Symbolic Computation, 2011, 46(10): 1173–1186.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ngô L X C and Winkler F, Rational general solutions of parametrizable AODEs, Publ. Math. Debrecen, 2011, 79(3–4): 573–587.

    MathSciNet  MATH  Google Scholar 

  25. Huang Y, Ngô L X C, and Winkler F, Rational general solutions of higher order algebraic ODEs, Journal of Systems Science and Complexity, 2013, 26(2): 261–280.

    Article  MathSciNet  MATH  Google Scholar 

  26. Grasegger G, Lastra A, Sendra J R, et al., A solution method for autonomous first-order algebraic partial differential equations, J. Computational and Applied Mathematics, 2016, 300: 119–133.

    Article  MathSciNet  MATH  Google Scholar 

  27. Grasegger G, Lastra A, Sendra J R, et al., Rational general solutions of systems of first-order algebraic partial differential equations, J. Computational and Applied Mathematics, 2018, 331: 88–103.

    Article  MathSciNet  MATH  Google Scholar 

  28. Vo N T, Grasegger G, and Winkler F, Deciding the existence of rational general solutions for first-order algebraic ODEs, J. Symbolic Computation, 2018, 87: 127–139.

    Article  MathSciNet  MATH  Google Scholar 

  29. Vo N T, Grasegger G, and Winkler F, Computation of all rational solutions of first-order algebraic ODEs, Advances in Applied Mathematics, 2018, 98: 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  30. Grasegger G and Vo N T, An algebraic-geometric method for computing Zolotarev polynomials, Proc. Internat. Symposium on Symbolic and Algebraic Computation (ISSAC 2017), Ed. by Burr M, 173–180, ACM Press, New York, 2017.

    Chapter  Google Scholar 

  31. Sendra J R and Winkler F, Tracing index of rational curve parametrizations, Computer Aided Geometric Design, 2001, 18(8): 771–795.

    Article  MathSciNet  MATH  Google Scholar 

  32. van der Waerden B, Algebra, Vol. I, Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  33. Artin M and Mumford D, Some elementary examples of unirational varieties which are not rational, Proc. London Mathematical Society, 1972, 25(3): 75–95.

    Article  MathSciNet  MATH  Google Scholar 

  34. Sendra J R, Winkler F, and Pérez-Díaz S, Rational Algebraic Curves — A Computer Algebra Approach, Springer-Verlag, Heidelberg, 2008.

    Book  MATH  Google Scholar 

  35. Carnicer M, The Poincaré problem in the nondicritical case, Annals of Mathematics, 1994, 140(2): 289–294.

    Article  MathSciNet  MATH  Google Scholar 

  36. Kamke E, Differentialgleichungen: Lösungsmethoden und Lösungen I, Teubner B G, Stuttgart, 1983.

    MATH  Google Scholar 

  37. Lastra A, Sendra J R, Ngô L X C, et al., Rational general solutions of systems of autonomous ordinary differential equations of algebro-geometric dimension one, Publ. Math. Debrecen, 2015, 86(1–2): 49–69.

    Article  MathSciNet  MATH  Google Scholar 

  38. Aroca J M, Cano J, Feng R, et al., Algebraic General Solutions of Algebraic Ordinary Differential Equations, Proceedings of the 30th International Symposium on Symbolic and Algebraic Computation (ISSAC 05), Ed. by Kauers M, 29–36, ACM Press, New York, 2005.

    Google Scholar 

  39. Vo N T and Winkler F, Algebraic general solutions of first-order algebraic ODEs, Proc. of 17th Workshop on Computer Algebra in Scientific Computing (CASC-2015), Ed. by Gerdt V P, et al., LNCS, Springer-Verlag, 2015, 9301: 479–492.

    Article  MathSciNet  MATH  Google Scholar 

  40. Ngô L X C, Sendra J R, and Winkler F, Classification of algebraic ODEs with respect to rational solvability, Contemporary Mathematics, 2012, 572: 193–210.

    Article  MathSciNet  MATH  Google Scholar 

  41. Ngô L X C, Sendra J R, and Winkler F, Birational transformations preserving rational solutions of algebraic ordinary differential equations, J. Computational and Applied Mathematics, 2015, 286: 114–127.

    Article  MathSciNet  MATH  Google Scholar 

  42. Ngo L X C, Nguyen K A, van der Put M, et al., Equivalence of differential equations of order one, J. Symbolic Computation, 2015, 71: 47–59.

    Article  MathSciNet  MATH  Google Scholar 

  43. Grasegger G and Winkler F, Symbolic solutions of first order algebraic ODEs, Computer Algebra and Polynomials, Eds. by Gutierrez J, Schicho J, and Weimann M, LNCS 8942: 94–104, Springer Switzerland, 2015.

    Google Scholar 

  44. Huang Y, Ngô L X C, and Winkler F, Rational general solutions of trivariate rational differential systems, Mathematics in Computer Science, 2012, 6(4): 361–374.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Winkler.

Additional information

This research was supported by the Austrian Science Fund under Grant No. P31327-N32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, F. The Algebro-Geometric Method for Solving Algebraic Differential Equations — A Survey. J Syst Sci Complex 32, 256–270 (2019). https://doi.org/10.1007/s11424-019-8348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-8348-0

Keywords

Navigation