Skip to main content
Log in

Elimination Theory in Differential and Difference Algebra

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Elimination theory is central in differential and difference algebra. The Wu-Ritt characteristic set method, the resultant and the Chow form are three fundamental tools in the elimination theory for algebraic differential or difference equations. In this paper, the authors mainly present a survey of the existing work on the theory of characteristic set methods for differential and difference systems, the theory of differential Chow forms, and the theory of sparse differential and difference resultants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritt J F, Differential Algebra, American Mathematical Society Colloquium Publications, Vol. XXXIII, American Mathematical Society, New York, 1950.

    Google Scholar 

  2. Kolchin E R, Differential Algebra and Algebraic Groups, Academic Press, New York-London, 1973.

    MATH  Google Scholar 

  3. Cohn R M, Difference Algebra, Interscience Publishers John Wiley & Sons, New York-London-Sydeny, 1965.

    MATH  Google Scholar 

  4. Wu W T, On the decision problem and the mechanization of theorem-proving in elementary geometry, Sci. Sinica, 1978, 21(2): 159–172.

    MathSciNet  MATH  Google Scholar 

  5. Wu W T, A constructive theory of differential algebraic geometry based on works of Ritt J F with particular applications to mechanical theorem-proving of differential geometries, Differential Geometry and Differential Equations (Shanghai, 1985), volume 1255 of Lecture Notes in Math., Springer, Berlin, 1987, 173–189.

    Chapter  Google Scholar 

  6. Wu W T, Basic Principles of Mechanical Theorem Proving in Elementary Geometries, Science Press, Beijing, 1984; English translation, Springer, Wien, 1994.

    Google Scholar 

  7. Aubry P, Lazard D, and Moreno Maza M, On the theories of triangular sets, J. Symbolic Comput., 1999, 28(1): 105–124.

    Article  MathSciNet  MATH  Google Scholar 

  8. Boulier F, Lazard D, Ollivier F, et al., Representation for the radical of a finitely generated differential ideal, Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC’95, Montreal, Canada, July 10–12, 1995, 158–166. ACM Press, New York, NY, 1995.

    Chapter  Google Scholar 

  9. Bouziane D, Kandri Rody A, and Maârouf H, Unmixed-dimensional decomposition of a finitely generated perfect differential ideal, J. Symbolic Comput., 2001, 31(6): 631–649.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hubert E, Factorization-free decomposition algorithms in differential algebra, J. Symbolic Comput., 2000, 29(4–5): 641–662.

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu W T, Mathematics Machenization, Science Press/Kluwer, Beijing, 2001.

    Google Scholar 

  12. Yang L, Zhang J Z, and Hou X R, Non-linear Algebraic Equations and Automated Theorem Proving, Shanghai Science and Technological Education Pub., 1996 (in Chinese).

    Google Scholar 

  13. Ritt J F and Doob J L, Systems of algebraic difference equations, Amer. J. Math., 1933, 55(1–4): 505–514.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ritt J F and Raudenbush H W, Ideal theory and algebraic difference equations, Trans. Amer. Math. Soc., 1939, 46: 445–452.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao X S, Luo Y, and Yuan C M, A characteristic set method for ordinary difference polynomial systems, J. Symbolic Comput., 2009, 44(3): 242–260.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao X S and Yuan C M, Resolvent systems of difference polynomial ideals, ISSAC 2006, ACM, New York, 2006, 100–108.

    Google Scholar 

  17. Gao X S, Yuan C M, and Zhang G L, Ritt-Wu’s characteristic set method for ordinary difference polynomial systems with arbitrary ordering, Acta Math. Sci. Ser. B (Engl. Ed.), 2009, 29(4): 1063–1080.

    MathSciNet  MATH  Google Scholar 

  18. Zhang G L and Gao X S. Properties of ascending chains for partial difference polynomial systems, Computer Mathematics 8th Asian Symposium, ASCM 2007, Singapore, December 15–17, 2007. Revised and invited papers, 307–321. Springer, Berlin, 2008.

    Google Scholar 

  19. Kondratieva M V, Levin A B, Mikhalev A V, et al., Differential and Difference Dimension Polynomials, volume 461 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1999.

    Book  MATH  Google Scholar 

  20. Gao X S, Van der Hoeven J, Yuan C M, et al., Characteristic set method for differential-difference polynomial systems, J. Symbolic Comput., 2009, 44(9): 1137–1163.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gel’fand I M, Kapranov M M, and Zelevinsky A V, Discriminants, Resultants, and Multidimensional Determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994.

    Google Scholar 

  22. Hodge W V D and Pedoe D, Methods of Algebraic Geometry, Vol. II, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  23. Brownawell W D, Bounds for the degrees in the nullstellensatz, Ann. Math., 1987, 126(3): 577–591.

    Article  MathSciNet  MATH  Google Scholar 

  24. Sturmfels B, Sparse elimination theory, Computational Algebraic Geometry and Commutative Algebra (Cortona, 1991), Sympos. Math., XXXIV, Cambridge University Press, Cambridge, 1993, 264–298.

    Google Scholar 

  25. Nesterenko Y V, Estimates for the orders of zeros of functions of a certain class and applications in the theory of transcendental numbers, Izv. Akad. Nauk SSSR Ser. Mat., 1977, 41: 253–284.

    MathSciNet  MATH  Google Scholar 

  26. Philippon P, Critères pour l’indpendance algbrique, Inst. Hautes Ètudes Sci. Publ. Math., 1986, 64: 5–52.

    Article  Google Scholar 

  27. Jeronimo G, Krick T, Sabia J, et al., The computational complexity of the Chow form, Found. Comput. Math., 2004, 4(1): 41–117.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao X S, Li W, and Yuan C M, Intersection theory in differential algebraic geometry: Generic intersections and the differential Chow form, Trans. Amer. Math. Soc., 2013, 365(9): 4575–4632.

    Article  MathSciNet  MATH  Google Scholar 

  29. Li W and Gao X S, Chow form for projective differential variety, J. Algebra, 2012, 370: 344–360.

    Article  MathSciNet  MATH  Google Scholar 

  30. Freitag J, Li W, and Scanlon T, Differential chow varieties exist, J. Lond. Math. Soc., 2017, 95(1): 128–156.

    Article  MathSciNet  MATH  Google Scholar 

  31. Li W and Li Y H, Difference Chow form, J. Algebra, 2015, 428: 67–90.

    Article  MathSciNet  MATH  Google Scholar 

  32. Li W, Partial differential chow forms and a type of partial differential chow varieties, ArXiv: 1709.02358v1, 2017.

    Google Scholar 

  33. Macaulay F S, The Algebraic Theory of Modular Systems, Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  34. Eisenbud D, Schreyer F, and Weyman J, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc., 2003, 16(3): 537–579.

    Article  MathSciNet  MATH  Google Scholar 

  35. Jouanolou J P, Le formalisme du résultant, Adv. Math., 1991, 90(2): 117–263.

    Article  MathSciNet  MATH  Google Scholar 

  36. Canny J, Generalised characteristic polynomials, J. Symb. Comput., 1990, 9(3): 241–250.

    Article  MathSciNet  MATH  Google Scholar 

  37. Emiris I Z and Canny J F, Efficient incremental algorithms for the sparse resultant and the mixed volume, J. Symb. Comput., 1995, 20(2): 117–149.

    Article  MathSciNet  MATH  Google Scholar 

  38. Emiris I Z and Pan V Y, Improved algorithms for computing determinants and resultants, J. Complexity, 2005, 21(1): 43–71.

    Article  MathSciNet  MATH  Google Scholar 

  39. Bernstein D N, The number of roots of a system of equations, Functional Anal. Appl., 1975, 9(3): 183–185.

    Article  MathSciNet  MATH  Google Scholar 

  40. Sturmfels B, On the Newton polytope of the resultant, J. Algebraic Combin., 1994, 3(2): 207–236.

    Article  MathSciNet  MATH  Google Scholar 

  41. Emiris I Z, On the complexity of sparse elimination, J. Complexity, 1996, 12(2): 134–166.

    Article  MathSciNet  MATH  Google Scholar 

  42. D’Andrea C, Macaulay style formulas for sparse resultants, Trans. Amer. Math. Soc., 2002, 354(7): 2595–2629.

    Article  MathSciNet  MATH  Google Scholar 

  43. Ore O, Formale theorie der linearen differentialgleichungen (Zweiter Teil), J. Reine Angew. Math., 1932, 168: 233–252.

    MathSciNet  MATH  Google Scholar 

  44. Berkovich L M and Tsirulik V G, Differential resultants and some of their applications, Differ. Equations, 1986, 22: 530–536.

    MATH  Google Scholar 

  45. Zeilberger D, A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 1990, 32(3): 321–368.

    Article  MathSciNet  MATH  Google Scholar 

  46. Chyzak F and Salvy B, Non-commutative elimination in Ore algebras proves multivariate identities, J. Symbolic Comput., 1998, 26(2): 187–227.

    Article  MathSciNet  MATH  Google Scholar 

  47. Carrà Ferro G, A resultant theory for systems of linear partial differential equations, Lie Groups Appl., 1994, 1(1): 47–55.

    MathSciNet  MATH  Google Scholar 

  48. Chardin M, Differential resultants and subresultants, Fundamentals of computation theory (Gosen, 1991), volume 529 of Lecture Notes in Comput. Sci., Springer, Berlin, 1991, 180–189.

    Book  MATH  Google Scholar 

  49. Li Z M, A subresultant theory for linear differential, linear difference and Ore polynomials, with applications, PhD thesis, Johannes Kepler University, 1996.

    Google Scholar 

  50. Hong H, Ore subresultant coefficients in solutions, Appl. Algebra Engrg. Comm. Comput., 2001, 12(5): 421–428.

    Article  MathSciNet  MATH  Google Scholar 

  51. Ritt J F, Differential Equations from the Algebraic Standpoint, American Mathematical Society, New York, 1932.

    Book  MATH  Google Scholar 

  52. Zwillinger D, Handbook of Differential Equations, Academic Press, San Diego, CA, 3rd Ed., 1998.

    MATH  Google Scholar 

  53. Rueda S L and Sendra J R, Linear complete differential resultants and the implicitization of linear DPPEs, J. Symbolic Comput., 2010, 45(3): 324–341.

    Article  MathSciNet  MATH  Google Scholar 

  54. Carrà-Ferro G, A resultant theory for the systems of two ordinary algebraic differential equations, Appl. Algebra Engrg. Comm. Comput., 1997, 8(6): 539–560.

    Article  MathSciNet  MATH  Google Scholar 

  55. Li W, Yuan C M, and Gao X S, Sparse differential resultant for Laurent differential polynomials, Found. Comput. Math., 2015, 15(2): 451–517.

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang Z Y, Yuan C M, and Gao X S, Matrix formulae of differential resultant for first order generic ordinary differential polynomials, Computer Mathematics 9th Asian Symposium, ASCM 2009, Fukuoka, Japan, December 14–17, 2009, 10th Asian symposium, ASCM 2012, Beijing, China, October 26–28, 2012, Contributed papers and invited talks, Springer, Berlin, 2014, 479–503.

    Google Scholar 

  57. Rueda S L, Linear sparse differential resultant formulas, Linear Algebra Appl., 2013, 438(11): 4296–4321.

    Article  MathSciNet  MATH  Google Scholar 

  58. Li W, Yuan C M, and Gao X S. Sparse difference resultant, ISSAC 2013 — Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2013, 275–282.

    Google Scholar 

  59. Li W, Yuan C M, and Gao X S, Sparse difference resultant, J. Symbolic Comput., 2015, 68(1): 169–203.

    Article  MathSciNet  MATH  Google Scholar 

  60. Yuan C M and Zhang Z Y, New bounds and efficient algorithm for sparse difference resultant, arXiv: 1810.00057, 2018.

    Google Scholar 

  61. Golubitsky O, Kondratieva M, Ovchinnikov A, et al., A bound for orders in differential Nullstellensatz, J. Algebra, 2009, 322(11): 3852–3877.

    Article  MathSciNet  MATH  Google Scholar 

  62. D’Alfonso L, Jeronimo G, and Solernó P, Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients, J. Complexity, 2014, 30(5): 588–603.

    Article  MathSciNet  MATH  Google Scholar 

  63. Gustavson R, Kondratieva M, and Ovchinnikov A, New effective differential Nullstellensatz, Adv. Math., 2016, 290: 1138–1158.

    Article  MathSciNet  MATH  Google Scholar 

  64. Ovchinnikov A, Pogudin G, and Scanlon T, Effective difference elimination and Nullstellensatz, ArXiv: 1712.01412V2, 2017.

    Google Scholar 

  65. Ovchinnikov A, Pogudin G, and Vo T N, Bounds for elimination of unknowns in systems of differential-algebraic equations, ArXiv: 1610.0422v6, 2018.

    Google Scholar 

  66. Yang L, Zeng Z B, and Zhang W N, Search dependency between algebraic equations: An algorithm applied to automated reasoning, Technical Report ICTP/91/6, International Center For Theoretical Physics, International Atomic Energy Agency, Miramare, Trieste, 1991.

    Google Scholar 

  67. Kalkbrener M, A generalized Euclidean algorithm for computing triangular representations of algebraic varieties, J. Symbolic Comput., 1993, 15(2): 143–167.

    Article  MathSciNet  MATH  Google Scholar 

  68. Gallo G and Mishra B, Efficient algorithms and bounds for Wu-Ritt characteristic sets, Effective Methods in Algebraic Geometry (Castiglioncello, 1990), volume 94 of Progr. Math., Birkhäuser Boston, Boston, MA, 1991, 119–142.

    Chapter  Google Scholar 

  69. Wang D M, An elimination method for polynomial systems, J. Symbolic Comput., 1993, 16(2): 83–114.

    Article  MathSciNet  MATH  Google Scholar 

  70. Wang D M, Decomposing polynomial systems into simple systems, J. Symbolic Comput., 1998, 25(3): 295–314.

    Article  MathSciNet  MATH  Google Scholar 

  71. Wang D M, Computing triangular systems and regular systems, J. Symbolic Comput., 2000, 30(2): 221–236.

    Article  MathSciNet  MATH  Google Scholar 

  72. Hubert E, Notes on triangular sets and triangulation-decomposition algorithms. I. Polynomial systems, Symbolic and Numerical Scientific Computation (Hagenberg, 2001), volume 2630 of Lecture Notes in Comput. Sci., Springer, Berlin, 2003, 1–39.

    Google Scholar 

  73. Li Z M and Wang D M, Some properties of triangular sets and improvement upon algorithm charser, Eds. by Calmet J, Ida T, Wang D, Artificial Intelligence and Symbolic Computation, Lecture Notes of Comput. Sci., 2006, 4120: 82–93.

    MATH  Google Scholar 

  74. Chou S C, Mechanical Geometry Theorem Proving, volume 41 of Mathematics and Its Applications, D. Reidel Publishing Co., Dordrecht, 1988.

    MATH  Google Scholar 

  75. Chou S C and Gao X S, Ritt-Wu’s decomposition algorithm and geometry theorem proving, 10th International Conference on Automated Deduction (Kaiserslautern, 1990), volume 449 of Lecture Notes in Comput. Sci., 207–220, Springer, Berlin, 1990.

    Chapter  Google Scholar 

  76. Chen C B, Davenport J H, May J P, et al., Triangular decomposition of semi-algebraic systems, J. Symb. Comput., 2013, 49: 3–26.

    Article  MathSciNet  MATH  Google Scholar 

  77. Chen C B, Moreno Maza M, Xia B C, et al., Computing cylindrical algebraic decomposition via triangular decomposition, ISSAC 2009 — Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2009, 95–102.

    Chapter  Google Scholar 

  78. Wang D M, Elimination Methods, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 2001.

    Google Scholar 

  79. Mou C Q and Bai Y, On the chordality of polynomial sets in triangular decomposition in topdown style, ISSAC’18 — Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2018, 287–294.

    Chapter  Google Scholar 

  80. Chen C B and Moreno Maza M, Algorithms for computing triangular decompositions of polynomial systems, ISSAC 2011 — Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2011, 83–90.

    Google Scholar 

  81. Wang D M, On the connection between ritt characteristic sets and buchberger-gröbner bases, Math. Comput. Sci., 2016, 10(4): 479–492.

    Article  MathSciNet  MATH  Google Scholar 

  82. Chai F J, Gao X S, and Yuan C M, A characteristic set method for solving Boolean equations and applications in cryptanalysis of stream ciphers, J. Syst. Sci. Complex., 2008, 21(2): 191–208.

    Article  MathSciNet  MATH  Google Scholar 

  83. Li X L, Mou C Q, and Wang D M, Decomposing polynomial sets into simple sets over finite fields: The zero-dimensional case, Comput. Math. Appl., 2010, 60(11): 2983–2997.

    Article  MathSciNet  MATH  Google Scholar 

  84. Mou C Q, Wang D M, and Li X L, Decomposing polynomial sets into simple sets over finite fields: The positive-dimensional case, Theoret. Comput. Sci., 2013, 468: 102–113.

    Article  MathSciNet  MATH  Google Scholar 

  85. Gao X S and Huang Z Y, Characteristic set algorithms for equation solving in finite fields, J. Symbolic Comput., 2012, 47(6): 655–679.

    Article  MathSciNet  MATH  Google Scholar 

  86. Li Z M and Wang D M, Coherent, regular and simple systems in zero decompositions of partial differential systems, Sys. Sci. Math. Sci., 1999, 12: 43–60.

    MATH  Google Scholar 

  87. Hubert E, Notes on triangular sets and triangulation-decomposition algorithms. II. Differential systems, Symbolic and Numerical Scientific Computation (Hagenberg, 2001), volume 2630 of Lecture Notes in Comput. Sci., Springer, Berlin, 2003, 40–87.

    Google Scholar 

  88. Boulier F, Lemaire F, and Moreno Maza M, Computing differential characteristic sets by change of ordering, J. Symbolic Comput., 2010, 45(1): 124–149.

    Article  MathSciNet  MATH  Google Scholar 

  89. Rosenfeld A, Specializations in differential algebra, Trans. Amer. Math. Soc., 1959, 90: 394–407.

    Article  MathSciNet  MATH  Google Scholar 

  90. Gao X S, Huang Z, and Yuan C M, Binomial difference ideals, J. Symbolic Comput., 2017, 80(3): 665–706.

    Article  MathSciNet  MATH  Google Scholar 

  91. Mishra B, Algorithmic Algebra, Springer, Boston, MA, 2001.

    MATH  Google Scholar 

  92. Bentsen I, The existence of solutions of abstract partial difference polynomials, Trans. Amer. Math. Soc., 1971, 158: 373–397.

    MathSciNet  MATH  Google Scholar 

  93. Freitag J, Bertini theorems for differential algebraic geometry, ArXiv: 1211.0972v3, 2015.

    Google Scholar 

  94. Li W and Li Y H, Computation of differential Chow forms for ordinary prime differential ideals, Adv. in Appl. Math., 2016, 72: 77–112.

    Article  MathSciNet  MATH  Google Scholar 

  95. Carrà Ferro G, A resultant theory for ordinary algebraic differential equations, Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 1997), volume 1255 of Lecture Notes in Comput. Sci., Springer, Berlin, 1997, 55–65.

    Chapter  MATH  Google Scholar 

  96. Yang L, Zeng Z B, and Zhang W N, Differential elimination with Dixon resultants, Appl. Math. Comput., 2012, 218(21): 10679–10690.

    MathSciNet  MATH  Google Scholar 

  97. Gao X S, Huang Z, Wang J, et al., Toric difference variety, Journal of Systems Science & Complexity, 2017, 30(1): 173–195.

    Article  MathSciNet  MATH  Google Scholar 

  98. Golubitsky O D, Kondrat’eva M V, and Ovchinnikov A I, On the generalized Ritt problem as a computational problem, Fundam. Prikl. Mat., 2008, 14(4): 109–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

Dedicated to the memories of Professor Wen-Tsün Wu

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11688101, 11301519, 11671014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yuan, CM. Elimination Theory in Differential and Difference Algebra. J Syst Sci Complex 32, 287–316 (2019). https://doi.org/10.1007/s11424-019-8367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-8367-x

Keywords

Navigation