Skip to main content
Log in

A gate size estimation algorithm for data association filters

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

The problem of forming validation regions or gates for new sensor measurements obtained when tracking targets in clutter is considered. Since the gate size is an integral part of the data association filter, this paper is intended to describe a way of estimating the gate size via the performance of the data association filter. That is, the gate size can be estimated by looking for the optimal performance of the data association filter. Simulations show that this estimation method of the gate size offers advantages over the common and classical estimation methods of the gate size, especially in a heavy clutter and/or false alarm environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackman S S. Multiple-Target Tracking with Radar Applications. Norwood, MA: Artech House, 1986. 83–92

    Google Scholar 

  2. Musicki D, Moerlande M R. Gate volume estimation for target tracking. In: International Conference on Information Fusion. Paris, 2004. 395–397

  3. Li X R, Bar-Shalom Y. Tracking in clutter with nearest neighbor filters: Analysis and performance. IEEE Trans Aerospace Electr Syst, 1996, 32(3): 995–1009

    Article  Google Scholar 

  4. Bar-Shalom Y, Li X R. Multitarget-Multisensor Tracking: Principles and Techniques. Norwood, MA: Artech House, 1995. 71–155

    Google Scholar 

  5. Bar-Shalom Y, Tes E. Tracking in a clutter environment with probability data association. Automatica, 1975, 9(11): 451–460

    Article  Google Scholar 

  6. Fortmann T E, Bar-Shalom Y, Scheffe M. Multi-target tracking using joint probabilistic data association. In: Proc IEEE Conf Decision and Control. Albuquerque. 1980, 12: 129–137

    Google Scholar 

  7. Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans Automat Contr, 1988, 33(8): 780–783

    Article  MATH  Google Scholar 

  8. Blackman S S, Popli R. Design and Analysis of Modern Tracking Systems. Norwood, MA: Artech House, 1999. 98–117

    MATH  Google Scholar 

  9. Sea R G. An efficient suboptimal decision procedure for association sensor data with stored tracks in real-time surveillance systems. Proceeding of the 1971 IEEE Conference on Decision and Control, 1971, 12: 33–37

    Google Scholar 

  10. Sea R G. Optimal correlation of sensor data with tracks in surveillance systems. Proceedings of the Sixth Conference on System Sciences. 1973, 1: 424–426

    Google Scholar 

  11. Stein J J, Blackman S S. Generalized correlation of Multitarget track data. IEEE Trans Aerospace Electr Syst, 1975, 11: 1207–1217

    Article  Google Scholar 

  12. Wong P J, Korsak A J. Reachable sets for tracking. Operat Res. 1974, 22: 497–508

    Article  MATH  MathSciNet  Google Scholar 

  13. Breidt F J, Carriquiry A L. Highest density gates for target tracking. IEEE Trans Aerospace Electr Syst, 2000, 36(1): 47–56

    Article  Google Scholar 

  14. Shishir K, Premalatha M, Nair G. Ellipsoidal gating for an airborne track while scan radar Singh. IEEE National Radar Conference — Proceedings. 1995, 5: 334–339

    Google Scholar 

  15. Collins J B, Uhlmann J K. An efficient gating in data association multivariate Gaussian distributed states. IEEE Trans Aerospace Electr Syst, 1992, 28(3): 909–916

    Article  Google Scholar 

  16. Hu L L, Chen Y Q, Zhou H X, et al. Multiple target tracking using quasi-drip-shaped gating. Proceedings of SPIE-The International Society for Optical Engineering. 2000, 4: 588–597

    Google Scholar 

  17. Wang X Z, Challa S, Evans R. Gating techniques for maneuvering target tracking in clutter. IEEE Trans Aerospace Electr Syst, 2002, 38(3): 1087–1098

    Article  Google Scholar 

  18. Zhao Y L, Wang X S, Wang G Y, et al. Tracking technique for radar network in the presence of multi-range-false-target deception jamming. Acta Electr Sin, 2007, 3: 454–458

    Google Scholar 

  19. Hu L L, Chen J Q, Zhou S H. Design of tracking gate in infrared search and track systems. J Infr Millimeter Waves, 2001, 2: 52–58

    Google Scholar 

  20. Zhang J, Lin J J, Chen X W. Influence of tracking gate upon multiple target tracking system. J East China Univ Sci Tech, 2006, 12: 1468–1471

    Google Scholar 

  21. Wei S H, Wu Q X. A performance optimized tracking gate algorithm based on data association. Mech Engin Automat, 2005, 5: 17–19

    Google Scholar 

  22. Zhu J, Guo L, Jin D S, et al. A fast data association algorithm applicable to engineering in multitarget tracking. J Univ Sci Tech China, 2000, 5: 58–63

    Google Scholar 

  23. Qiu B S, Xu L, Yang J A, et al. An auto tracking gate method. In: Chinese Conference on Intelligence and Automatic, 1995. Changsha, China. 189–192

  24. Wang L Y, Zhao Y J, Wang Q X. On multi-target tracking theory and data association algorithm in phased array radar. Electr Opt Contr, 2007, 1: 33–38

    Google Scholar 

  25. Duan Y Y, Yu J Q, Wang J. Multiple target tracking algorithm based on moving state class. In: The Second Chinese Conference on Human-Computer Harmonious. Beijing, China, 2006. 332–335

  26. Fan L, Wang H Z, Wang H. Data fusion of Multi-Target tracking based on FCM algorithm in wireless sensor networks, J Beijing Univ Posts Telecommun, 2006, 29: 158–162

    MathSciNet  Google Scholar 

  27. Reid D B. An algorithm for tracking multiple targets. IEEE Trans Automatic Contr, 1979, 24(12): 843–854

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingHui Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60672096)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Wan, Q. & You, Z. A gate size estimation algorithm for data association filters. Sci. China Ser. F-Inf. Sci. 51, 425–432 (2008). https://doi.org/10.1007/s11432-008-0033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-008-0033-1

Keywords

Navigation