Skip to main content
Log in

Approximation and universality of fuzzy Turing machines

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Fuzzy Turing machines are the formal models of fuzzy algorithms or fuzzy computations. In this paper we give several different formulations of fuzzy Turing machine, which correspond to nondeterministic fuzzy Turing machine using max-⋆ composition for some t-norm ⋆ (or NFTM, for short), nondeterministic fuzzy Turing machine (or NFTM), deterministic fuzzy Turing machine (or DFTM), and multi-tape versions of fuzzy Turing machines. Some distinct results compared to those of ordinary Turing machines are obtained. First, it is shown that NFTM, NFTM, and DFTM are not necessarily equivalent in the power of recognizing fuzzy languages if the t-norm ⋆ does not satisfy finite generated condition, but are equivalent in the approximation sense. That is to say, we can approximate an NFTM by some NFTM with any given accuracy; the related constructions are also presented. The level characterization of fuzzy recursively enumerable languages and fuzzy recursive languages are exploited by ordinary r.e. languages and recursive languages. Second, we show that universal fuzzy Turing machine exists in the approximated sense. There is a universal fuzzy Turing machine that can simulate any NFTM on it with a given accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zadeh L A. Fuzzy algorithm. Inf Contr, 1968, 12: 94–102

    Article  MATH  MathSciNet  Google Scholar 

  2. Santos E S. Fuzzy algorithms. Inf Contr, 1970,17: 326–339

    Article  MATH  Google Scholar 

  3. Lee E T, Zadeh L A. Note on fuzzy languages. Inf Sci, 1969, 1: 421–434

    Article  MathSciNet  Google Scholar 

  4. Mordeson J N, Malik D S. Fuzzy Automata and Languages: Theory and Applications. London: Chapman & Hall/CRC, 2002

    MATH  Google Scholar 

  5. Thomson M G, Marinos P N. Deterministic acceptors of regular fuzzy languages. IEEE Trans Syst Man Cybernect, 1974, 4: 228–230

    Google Scholar 

  6. Castro J L, Delgado M, Mantas C T. A new approach for the execution and adjustment of a fuzzy algorithm. Fuzzy Sets Syst, 2001, 121: 491–503

    Article  MATH  MathSciNet  Google Scholar 

  7. Gile C, Omlin C, Thornber K K. Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems. Proc IEEE, 1999, 87: 1623–1640

    Article  Google Scholar 

  8. Asveld P R J. Fuzzy context-free languages-part1: generalized context-free grammars. Theor Comp Sci, 2005, 347(1–2): 167–190

    Article  MATH  MathSciNet  Google Scholar 

  9. Ying M S. A formal model of computing with words. IEEE Trans Fuzzy Syst, 2002, 10(5): 640–652

    Article  Google Scholar 

  10. Wang H, Qiu D. Computing with words via Turing machines: a formal approach. IEEE Trans Fuzzy Syst, 2003, 11(6): 742–753

    Article  MathSciNet  Google Scholar 

  11. Wiedermann J. Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machines. Theor Comp Sci, 2004, 317: 61–69

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang L X. A Course in Fuzzy Systems and Control. Englewood Cliffs, NJ: Princeton-Hall PTR, 1997

    MATH  Google Scholar 

  13. Li Y M. Analysis of Fuzzy Systems (in Chinese). Beijing: Science Press, 2005

    Google Scholar 

  14. Pedrycz W, Gomide F. An Introduction to Fuzzy Sets: Analysis and Design. Cambridge: MIT press, 1998

    MATH  Google Scholar 

  15. Hájak P. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publisher, 1998

    Google Scholar 

  16. Wang G J. Fully implicational Triple I method for fuzzy reasoning (in Chinese). Sci China Ser E, 1999, 29: 43–53

    MATH  Google Scholar 

  17. Wang G J. Non-Classical Mathematical Logic and Approximate Reasong (in Chinese). Beijing: Science Press, 2000

    Google Scholar 

  18. Hopcroft J E, Ullman J D. Introduction to Automata Theory, Languages and Computation. New York: Addison-Wesley, 1979

    MATH  Google Scholar 

  19. Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comp, 1997, 26(5): 1411–1473

    Article  MATH  MathSciNet  Google Scholar 

  20. Li YM, Pedrycz W. Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids. Fuzzy Sets Syst, 2005, 156: 68–92

    Article  MATH  MathSciNet  Google Scholar 

  21. Li Y M. Approximation and robustness of fuzzy finite automata. Int J Approx Reas, 2008, 47: 247–257

    Article  Google Scholar 

  22. Klement E P, Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publisher, 2000

    MATH  Google Scholar 

  23. Li Y M, Li D, Pedrycz W, Wu J. An approach to measure the robustness of fuzzy reasoning. Int J Intell Syst, 2005, 20(4): 393–413

    Article  MATH  Google Scholar 

  24. Hájak P. Arithemetical complexity of fuzzy predicate logic—a survey. Soft Comp, 2005, 9(12): 935–941

    Article  Google Scholar 

  25. Aguzzoli S, Gerla B, Haniková Z. Complexity issues in basic logic. Soft Comp, 2005, 9(12): 919–934

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongMing Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10571112), and “TRAPOYT” of China and the National 973 Foundation Research Program (Grant No. 2002CB312200)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y. Approximation and universality of fuzzy Turing machines. Sci. China Ser. F-Inf. Sci. 51, 1445–1465 (2008). https://doi.org/10.1007/s11432-008-0089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-008-0089-y

Keywords

Navigation