Skip to main content
Log in

On the quantum master equation under feedback control

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

The nature of the quantum trajectories, described by stochastic master equations, may be jump-like or diffusive, depending upon different measurement processes. There are many different unravelings corresponding to different types of stochastic master equations for a given master equation. In this paper, we study the relationship between the quantum stochastic master equations and the quantum master equations in the Markovian case under feedback control. We show that the corresponding unraveling no longer exists when we further consider feedback control besides measurement. It is due to the fact that the information gained by the measurement plays an important role in the control process. The master equation governing the evolution of ensemble average cannot be restored simply by eliminating the noise term unlike the case without a control term. By establishing a fundamental limit on performance of the master equation with feedback control, we demonstrate the differences between the stochastic master equation and the master equation via theoretical proof and simulation, and show the superiority of the stochastic master equation for feedback control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal G S. Quantum statistical theories of spontaneous emission and their relation to other approaches. Springer Tracts Mod Phys. Berlin: Springer, 1974, 70: 1–129

    Google Scholar 

  2. Walls D F, Milburn G J. Quantum Optics. Berlin: Springer, 1994

    MATH  Google Scholar 

  3. Breuer H P, Petruccione F. The Theory of Open Quantum Systems. Oxford: Oxford University Press, 2007

    Google Scholar 

  4. Gardiner C W, Zoller P. Quantum Noises. Berlin: Springer-Verlag, 1999

    Google Scholar 

  5. Lai C W, Maletinsky P, Badolato A, et al. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys Rev lett, 2006, 96: 167403

    Article  Google Scholar 

  6. Aharonov D, Kitaev A, Preskill J. Fault-tolerant quantum computation with long-range correlated noise. Phys Rev Lett, 2006, 96: 050504

    Article  Google Scholar 

  7. Breuer H -P, Vacchini B. Quantum semi-Markov processes. Phys Rev Lett, 2008, 101: 140402

    Article  MathSciNet  Google Scholar 

  8. Breuer H -P. Genuine quantum trajectories for non-Markovian processes. Phys Rev A, 2004, 70: 012106

    Article  Google Scholar 

  9. Piilo J, Maniscalco S, Harkonen K, et al. Non-Markovian quantum jumps. Phys Rev Lett, 2008, 100: 180402

    Article  MathSciNet  Google Scholar 

  10. Wiseman H M, Milburn G J. Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. Phys Rev A, 1993, 47: 1652–1666

    Article  Google Scholar 

  11. Kondov I, Kleinekathöfer U, Schreiber M. Stochastic unraveling of Redfield master equations and its application to electron transfer problems. J Chem Phys, 2003, 119: 6635–6646

    Article  Google Scholar 

  12. Breuer H -P, Kappler B, Petruccione F. Stochastic wavefunction method for non-Markovian quantum master equations. Phys Rev A, 1999, 59: 1633–1643

    Article  Google Scholar 

  13. Strunz W T, Diósi L, Gisin N. Open system dynamics with non-Markovian quantum trajectories. Phys Rev Lett, 1999, 82: 1801–1805

    Article  MATH  MathSciNet  Google Scholar 

  14. Garraway B M, Knight P L. Comparison of quantum-state diffusion and quantum-jump simulations of two-photon processes in a dissipative environment. Phys Rev A, 1994, 49: 1266–1274

    Article  Google Scholar 

  15. Doherty A C, Habib S, Jacobs K, et al. Quantum feedback control and classical control theory. Phys Rev A, 2000, 62: 012105

    Article  Google Scholar 

  16. van Handel R, Stockton J K, Mabuchi H. Modelling and feedback control design for quantum state preparation. J Optics B, 2005, 7: S179–S197

    Google Scholar 

  17. Carmichael H J. An Open Systems Approach to Quantum Optics. Berlin: Springer-Verlag, 1993

    MATH  Google Scholar 

  18. Wiseman H M, Milburn G J. Quantum theory of field-quadrature measurements. Phys Rev A, 1993, 47: 642–662

    Article  Google Scholar 

  19. Belavkin V P. Quantum stochastic calculus and quantum nonlinear filtering. J Multivariate Anal, 1992, 42: 171–201

    Article  MATH  MathSciNet  Google Scholar 

  20. Bouten L, Gutá M, Maassen H. Stochastic Schr odinger equations. J Phys A, 2004, 37: 3189–3209

    Article  MATH  MathSciNet  Google Scholar 

  21. Mirrahimi M, van Handel, R. Stabilizing feedback control for quantum systems. SIAM J Control Optim, 2007, 46: 445–467

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Qi.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60821091)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, B. On the quantum master equation under feedback control. Sci. China Ser. F-Inf. Sci. 52, 2133–2139 (2009). https://doi.org/10.1007/s11432-009-0206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0206-6

Keywords

Navigation