Skip to main content
Log in

Asymptotic performance of amplify-and-forward MIMO relaying with transmit antenna selection

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes two schemes, TAS-SD&RD and TAS-SR&RD, in which transmit antenna selection (TAS) strategies are combined with amplify-and-forward (AF) protocol in MIMO relaying scenario considering the destination has only limited channel state information (CSI) of the source-to-relay channel, and analyzes asymptotic performance of the two schemes. The source, destination, and relay are equipped with multiple antennas, denoted by N S, N D, and N R, respectively. Specifically, the paper derives the asymptotic outage probability and symbol error rate (SER) of the proposed schemes in the cooperative AF MIMO relaying scenario. These analyses in high SNR regime lead to the conclusion that TAS-SD&RD and TAS-SR&RD can achieve full diversity order, N S N D + NR min {N S,N D}, in some antenna configurations of the cooperative scenario. Numerical results that confirm our analyses are also presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Telatar İ E. Capacity of multi-antenna Gaussian channels. Eur Trans Telecommun, 1999, 10: 585–595

    Article  Google Scholar 

  2. Paulraj A J, Gore D A, Nabar R U, et al. An overview of MIMO communications—A key to gigabit wireless. Proc IEEE, 2004, 92: 198–218

    Article  Google Scholar 

  3. Sendonaris A, Erkip E, Aazhang B. User cooperation diversity—Part I: System description. IEEE Trans Commun, 2003, 51: 1927–1938

    Article  Google Scholar 

  4. Sendonaris A, Erkip E, Aazhang B. User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Trans Commun, 2003, 51: 1939–1948

    Article  Google Scholar 

  5. Laneman J N, Tse D N C, Wornell G W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans Inf Theory, 2004, 50: 3062–3080

    Article  MathSciNet  Google Scholar 

  6. Anghel P A, Kaveh M. Exact symbol error probability of a cooperative network in a Rayleigh-fading environment. IEEE Trans Wirel Commun, 2004, 3: 1416–1421

    Article  Google Scholar 

  7. Ribeiro A, Cai A, Giannakis G B. Symbol error probability for general cooperative links. IEEE Trans Wirel Commun, 2005, 4: 1264–1273

    Article  Google Scholar 

  8. Ikki S, Ahmed M H. Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel. IEEE Commun Lett, 2007, 11: 334–336

    Article  Google Scholar 

  9. Maham B, Hjørungnes A. Asymptotic performance analysis of amplify-and-forward cooperative networks in a Nakagamim fading environment. IEEE Commun Lett, 2009, 13: 300–302

    Article  Google Scholar 

  10. Hasna M O, Alouini M S. End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Trans Wirel Commun, 2003, 2: 1126–1131

    Article  Google Scholar 

  11. Hasna M O, Alouini M S. Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Trans Commun, 2004, 52: 130–135

    Article  Google Scholar 

  12. Hasna M O, Alouini M S. A performance study of dual-hop transmissions with fixed gain relays. IEEE Trans Wirel Commun, 2004, 3: 1963–1968

    Article  Google Scholar 

  13. Zogas D A, Karagiannidis G K, Sagias N C. Dual hop wireless communications over Nakagami fading. In: Proc IEEE VTC-Spring’04, Milan, Italy, 2004. 4: 2200–2204

    Google Scholar 

  14. Tsiftsis T A, Karagiannidis G K, Mathiopoulos P T, et al. Nonregenerative dual-hop cooperative links with selection diversity. EURASIP J Wirel Commun Network, 2006, 2006: 8

    Google Scholar 

  15. Li W, Wang J B, Chen M. Outage probability of dual-hop amplify-and-forward relaying systems over shadowed Nakagamim fading channels. IEICE Trans Fundam, 2008, E91-A: 3403–3405

    Article  Google Scholar 

  16. Yuksel M, Erkip E. Multiple-antenna cooperative wireless systems: A diversity-multiplexing tradeoff perspective. IEEE Trans Inf Theory, 2007, 53: 3371–3393

    Article  MathSciNet  Google Scholar 

  17. Fan Y, Thompson J. MIMO configurations for relay channels: Theory and practice. IEEE Trans Wirel Commun, 2007, 6: 1774–1786

    Article  Google Scholar 

  18. Munoz-Medina O, Vidal J, Agustin A. Linear transceiver design in nonregenerative relays with channel state information. IEEE Trans Signal Process, 2007, 55: 2593–2604

    Article  MathSciNet  Google Scholar 

  19. Tang X, Hua Y. Optimal design of non-regenerative MIMO wireless relays. IEEE Trans Wirel Commun, 2007, 6: 1398–1407

    Article  Google Scholar 

  20. Lee I H, Kim D. End-to-end BER analysis for dual-hop OSTBC transmissions over Rayleigh fading channels. IEEE Trans Commun, 2008, 56: 347–351

    Article  Google Scholar 

  21. Louie R H Y, Li Y H, Vucetic B. Performance analysis of beamforming in two hop amplify and forward relay networks. In: Proc IEEE ICC’08, Beijing, China, 2008. 4311–4315

  22. Yu X B, Bi G G, Xu W Y. Low-complexity distributed differential space-time coding scheme for amplify-and-forward cooperative networks. Sci China Ser F-Inf Sci, 2009, 52: 1418–1427

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen Z. Asymptotic performance of transmit antenna selection with maximal-ratio combining for generalized selection criterion. IEEE Commun Lett, 2004, 8: 247–249

    Article  Google Scholar 

  24. Chen Z, Yuan J, Vucetic B. Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. IEEE Trans Veh Technol, 2005, 54: 1312–1321

    Article  Google Scholar 

  25. Kim J B, Kim D. End-to-end BER performance of cooperative MIMO transmission with antenna selection in Rayleigh fading. In: Proc IEEE ACSSC’06, Pacific Grove, CA, USA, 2006. 1654–1657

  26. Kim J B, Kim D. BER analysis of dual-hop amplify-and-forward MIMO relaying with best antenna selection in Rayleigh fading channels. IEICE Trans Commun, 2008, E91-B: 2772–2775

    Article  Google Scholar 

  27. Peters S W, Heath R W. Nonregenerative MIMO relaying with optimal transmit antenna selection. IEEE Signal Process Lett, 15: 421–424

  28. Lee I H, Kim D. Outage probability of multi-hop MIMO relaying with transmit antenna selection and ideal relay gain over rayleigh fading channels. IEEE Trans Commun, 2009, 57: 357–360

    Article  Google Scholar 

  29. Cao L, Zhang X, Wang Y, et al. Transmit antenna selection strategy in amplify-and-forward MIMO relaying. In: Proc IEEE WCNC’09, Budapest, Hungary, 2009

  30. Proakis J G. Digital Communications. 4th ed. New York: McGraw-Hill, 2001

    Google Scholar 

  31. Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th ed. New York: Dover Publications, 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, L., Yang, D., Yang, H. et al. Asymptotic performance of amplify-and-forward MIMO relaying with transmit antenna selection. Sci. China Inf. Sci. 53, 2631–2641 (2010). https://doi.org/10.1007/s11432-010-4104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4104-8

Keywords

Navigation