Skip to main content
Log in

Selection of unitary operations in quantum secret sharing without entanglement

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We propose a substitute-Bell-state attack strategy for quantum secret sharing schemes without entanglement, as well as a definition of the minimum failure probability of such attack strategy. A quantitative analysis of security degrees corresponding to different unitary operations is also provided, when the secret sharing schemes without entanglement are stricken by substitute-Bell-state attack. As a result, the relation between the selection of unitary operations and the effect of substitute-Bell-state attack is shown, which can serve as an important guidance for the selection of unitary operations in designing and implementing quantum secret sharing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000, 61: 423111–423118

    Article  MathSciNet  Google Scholar 

  2. Yang C, Gea-Banacloche J. Teleportation of rotations and receiver-encoded secret sharing. J Opt B: Quantum Semiclass Opt, 2001, 3: 407–411

    Article  Google Scholar 

  3. Karimipour V, Bahraminasab A, Bagherinezhad S. Entanglement swapping of generalized cat states and secret sharing. Phys Rev A, 2002, 65: 42320

    Article  Google Scholar 

  4. Guo G P, Guo G C. Quantum secret sharing without entanglement. Phys Lett A, 2003, 310: 247–251

    Article  MathSciNet  MATH  Google Scholar 

  5. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 52307

    Article  Google Scholar 

  6. Deng F G, Long G L, Wang Y, et al. Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin Phys Lett, 2004, 21: 2097–2100

    Article  Google Scholar 

  7. Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A, 2005, 337: 329–334

    Article  MATH  Google Scholar 

  8. Yang Y G, Wen Q Y, Zhu F C. An efficient quantum secret sharing protocol with orthogonal product states. Sci China Ser G-Phys Mech Astron, 2007, 50: 331–338

    Article  Google Scholar 

  9. Gao T, Yan F L, Li Y C. Quantum secret sharing between m-party and n-party with six states. Sci China Ser G-Phys Mech Astron, 2009, 52: 1191–1202

    Article  Google Scholar 

  10. Xu J, Chen H W, Liu W J, et al. An efficient quantum secret sharing scheme based on orthogonal product states. In: Proceeding of 2010 IEEE Congress on Evolutionary Computation, Barcelona, Spain, 2010. 949–952

  11. Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50: 572–580

    Article  MATH  Google Scholar 

  12. Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement. Phys Rev A, 2005, 72: 12304

    Article  Google Scholar 

  13. Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state Sharing. Phys Rev Lett, 2004, 92: 177901–177903

    Article  Google Scholar 

  14. Li Y M, Zhang K S, Peng K C. Multiparty secret sharing of quantum information based on entanglement swapping. Phys Lett A, 2004, 324: 420–424

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 22338

    Article  Google Scholar 

  16. Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys Rev A, 2005, 72: 44301

    Article  Google Scholar 

  17. Lance A M, Symul T, Bowen W P, et al. Continuous-variable quantum-state sharing via quantum disentanglement. Phys Rev A, 2005, 71: 33814

    Article  Google Scholar 

  18. Li X H, Zhou P, Li C Y, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J Phys B, 2006, 39: 1975–1983

    Article  Google Scholar 

  19. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  Google Scholar 

  20. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  Google Scholar 

  21. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162

    Article  Google Scholar 

  22. Wagenknecht C, Li C M, Reingruber A, et al. Experimental demonstration of a heralded entanglement source. Nat Photonics, 2010, 4: 549–552

    Article  Google Scholar 

  23. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 44301

    Article  MathSciNet  Google Scholar 

  24. Li C, Chang C, Hwang T. Comment on “quantum secret sharing between multiparty and multiparty without entanglement”. Phys Rev A, 2006, 73: 16301

    Article  Google Scholar 

  25. Yang Y G, Wen Q Y. Threshold quantum secret sharing between multi-party and multi-party. Sci China Ser G-Phys Mech Astron, 2008, 51: 1308–1315

    Article  MATH  Google Scholar 

  26. Wang Y H, Song H S. Preparation of multi-atom specially entangled W-class state and splitting quantum information. Chin Sci Bull, 2009, 54: 2599–2605

    Article  Google Scholar 

  27. Zhang W, Liu Y M, Yin X F, et al. Partition of arbitrary single-qubit information among n recipients via asymmetric (n+1)-qubit W state. Sci China Ser G-Phys Mech Astron, 2009, 52: 1611–1617

    Article  Google Scholar 

  28. Zuo X Q, Liu Y M, Zhang W, et al. Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci China Ser G-Phys Mech Astron, 2009, 52: 1906–1912

    Article  Google Scholar 

  29. Hao L, Li J L, Long G L. Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci China Ser G-Phys Mech Astron, 2010, 53: 491–495

    Article  Google Scholar 

  30. Zhang X L, Ji D Y. Analysis of a kind of quantum cryptographic schemes based on secret sharing. Sci China Ser G-Phys Mech Astron, 2009, 52: 1313–1316

    Article  Google Scholar 

  31. Xu F X, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997

    Article  Google Scholar 

  32. Li C Z. Real application of quantum communications in China. Chin Sci Bull, 2009, 54: 2976–2977

    Article  Google Scholar 

  33. Wen H, Han Z F, Zhao Y B, et al. Multiple stochastic paths scheme on partially-trusted relay quantum key distribution network. Sci China Ser F-Inf Sci, 2009, 52: 18–22

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang Y G, Wen Q Y. Threshold quantum secure direct communication without entanglement. Sci China Ser G-Phys Mech Astron, 2008, 51: 176–183

    Article  MATH  Google Scholar 

  35. Xu J, Chen H W, Liu W J, et al. Efficient phase-coded quantum key distribution scheme. J Southeast Univ Nat Sci Ed, 2009, 39: 216–219

    Google Scholar 

  36. Zhang S Y, Feng Y, Sun X M, et al. Upper bound for the success probability of unambiguous discrimination among quantum states. Phys Rev A, 2001, 64: 62103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HanWu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Chen, H., Liu, W. et al. Selection of unitary operations in quantum secret sharing without entanglement. Sci. China Inf. Sci. 54, 1837–1842 (2011). https://doi.org/10.1007/s11432-011-4240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4240-9

Keywords

Navigation