Skip to main content
Log in

Fabrication and characteristics of ZnO thin films deposited by RF sputtering on plastic substrates for flexible display

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

ZnO thin films were successfully grown on flexible plastic substrates using radio-frequency magnetron sputtering method at room temperature. The effects of the sputtering power on the quality of the ZnO films have been investigated. The results show that thin films were polycrystalline, with wurtzite structure and a strong preferred c-axis orientation (002). The root-mean-square (rms) surface roughness of the ZnO thin films is 22.1 nm. The ZnO thin films fabricated by sputtering with 70 W sputtering power have a high mobility of 34.33 cm2/V·s. The ZnO films are shown to be compatible with flexible display on plastic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jun J H, Park B, Cho K, et al. Flexible TFTs based on solution-processed ZnO nanoparticles. Nanotechnology, 2009, 20: 505201

    Article  Google Scholar 

  2. Yang C, Hong K, Jang J, et al. Solution-processed flexible ZnO transparent thin-film transistors with a polymer gate dielectric fabricated by microwave heating. Nanotechnology, 2009, 20: 465201.

    Article  Google Scholar 

  3. Nomura K, Ohta H, Ueda K, et al. Thin film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300: 1269–1272

    Article  Google Scholar 

  4. Cross R B M, Souza M M D. Investigating the stability of zinc oxide thin film transistors. Appl Phys Lett, 2006, 89: 263513-1–263513-3

    Article  Google Scholar 

  5. Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors. Appl Phys Lett, 2003, 82: 733–735

    Article  Google Scholar 

  6. Carcia P F, McLean R S, Reilly M H, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl Phys Lett, 2003, 82: 1117–1119

    Article  Google Scholar 

  7. Bae H S, Yoon M H, Kim J H, et al. Photodetecting properties of ZnO-based thin-film transistors. Appl Phys Lett, 2003, 83: 5313–5315

    Article  Google Scholar 

  8. Lee K, Kim J H, Im S. Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric. Appl Phys Lett, 2006, 88: 023504-1–023504-3

    Google Scholar 

  9. Znaidi L, Soler I G, Benyahia S, et al. Oriented ZnO thin films synthesis by sol-gel process for laser application. Thin Solid Films, 2003, 428: 257–262

    Article  Google Scholar 

  10. Gorla C R, Emanetoglu N W, Liang S. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (012) sapphire by metalorganic chemical vapor deposition. J Appl Phys, 1999, 85: 2595–2602

    Article  Google Scholar 

  11. Fortunato E M C, Barquinha P M C, Pimentel A C M B G, et al. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl Phys Lett, 2004, 85: 2541–2543

    Article  Google Scholar 

  12. Ye J D, Tan S T, Pannirselvam S, et al. Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics. Appl Phys Lett, 2009, 95: 101905

    Article  Google Scholar 

  13. Jo J, Seo O, Jeong E, et al. Effect of hydrogen in zinc oxide thin-film transistor grown by metal organic chemical vapor deposition. Japanese J Appl Phys, 2007, 46: 2493–2495

    Article  Google Scholar 

  14. Saha S, Mehan N, Sreenivas K, et al. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance. Appl Phys Lett, 2009, 95: 071106

    Article  Google Scholar 

  15. Mohanty B C, Jo Y H, Yeon D H, et al. Stress-induced anomalous shift of optical band gap in ZnO Al thin films. Appl Phys Lett, 2009, 95: 062103

    Article  Google Scholar 

  16. Park J S, Jeong J K, Mo Y G, et al. Impact of high-k TiOx dielectric on device performance of indium-gallium-zinc oxide transistors. Appl Phys Lett, 2009, 94: 042105

    Article  Google Scholar 

  17. Chang S, Song Y W, Lee S, et al. Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure. Appl Phys Lett, 2008, 92: 192104

    Article  Google Scholar 

  18. Lim S J, Kwon S, Kima H. High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Appl Phys Lett, 2007, 91: 183517

    Article  Google Scholar 

  19. Nayak P K, Jang J, Lee C, et al. Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors. Appl Phys Lett, 2009, 95: 193503

    Article  Google Scholar 

  20. Banerjee A N, Ghosh C K, Chattopadhyay K K, et al. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films, 2006, 496: 112–116

    Article  Google Scholar 

  21. Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432: 488–492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Lei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, D., Wang, Y., Zhang, S. et al. Fabrication and characteristics of ZnO thin films deposited by RF sputtering on plastic substrates for flexible display. Sci. China Inf. Sci. 55, 1441–1445 (2012). https://doi.org/10.1007/s11432-011-4348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4348-y

Keywords

Navigation