Skip to main content
Log in

Maximal effective baseline for polarimetric interferometric SAR forest height estimation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The concepts of critical baseline and maximal effective baseline have been defined for interferometric SAR (InSAR) DEM application based on the spatial decorrelation (which is a function of baseline). This paper puts forward these two concepts to polarimetric interferometric SAR (Pol-InSAR) forest height estimation application. The application makes use of volume decorrelation, which is also a function of baseline. So both the spatial decorrelation and volume decorrelation are considered to determine Pol-InSAR critical and maximal effective baseline. Firstly various decorrelation effects are discussed. Then the calculation formula of Pol-InSAR maximal effective baseline are presented and compared to that of InSAR. For validation, RVoG-based and PolSARpro-based simulation data and DLR ESAR data are used. The concept of Pol-InSAR maximal effective baseline is of practical significance in selection of Pol-InSAR image pairs as well as in the design of further Pol-InSAR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry. P IEEE, 2000, 88: 333–382

    Article  Google Scholar 

  2. Lee J S, Pottier E. Polarimetric Radar Imaging: from Basic to Applications. Boca Raton: CRC Press, 2009. 66–73

    Book  Google Scholar 

  3. Cloude S R, Papathanassiou K P. Three-stage inversion process for polarimetric SAR interferometry. IEE P-Radar Son Nav, 2003, 150: 125–134

    Article  Google Scholar 

  4. Lopez-Sanchez J M, Ballester-Berman J D, Marquez-Moreno Y. Model limitations and parameter-estimation methods for agricultural applications of polarimetric SAR interferometry. IEEE Trans Geosci Remote, 2007, 45: 3481–3493

    Article  Google Scholar 

  5. Schneider R Z, Papathanassiou K P, Hajnsek I, et al. Polarimetric and interferometric characterization of coherent scatterers in urban areas. IEEE Trans Geosci Remote, 2006, 44: 971–984

    Article  Google Scholar 

  6. Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote, 1992, 30: 950–959

    Article  Google Scholar 

  7. Gatelli F, Guarnieri A M, Parizzi F, et al. The wavenumber shift in SAR interferometry. IEEE Trans Geosci Remote, 1994, 32: 855–865

    Article  Google Scholar 

  8. Chang Z, Zhang J, Gong H, et al. ’Maximal effective baseline’ for conventional SAR interferometry. Int J Remote Sens, 2007, 28: 5603–5615

    Article  Google Scholar 

  9. Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry. IEEE Trans Geosci Remote, 1998, 36: 1551–1565

    Article  Google Scholar 

  10. Treuhaft R N, Siqueira P R. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Sci, 2000, 35: 141–177

    Article  Google Scholar 

  11. Mette T, Kugler F, Papathanassiou K P, et al. Forest and the random volume over ground — nature and effect of 3 possible error types. In: 6th European Conference on Synthetic Aperture Radar. Berlin: VDE Verlag GmbH, 2006. 1–4

    Google Scholar 

  12. Krieger G, Papathanassiou K P, Cloude S R. Spaceborne polarimetric SAR interferometry: performance analysis and mission concepts. Eurasip J Appl Signal Proc, 2005, 20: 3272–3292

    Article  Google Scholar 

  13. Papathanassiou K P. Polarimetric SAR interferometry. PhD Dissertation. Graz: Technical University Graz, 1999. 72–74

    Google Scholar 

  14. Lee J S, Hoppel K W, Mango S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans Geosci Remote, 1994, 32: 1017–1027

    Article  Google Scholar 

  15. Papathanassiou K P, Moreira J R. Interferometric analysis of multifrequency and multipolarization SAR data. In: International Geoscience and Remote Sensing Symposium. Vol 2. Piscataway: IEEE, 1996. 27–31

    Google Scholar 

  16. Treuhaft R N, Madsen S N, Moghaddam M, et al. Vegetation characteristics and underlying topography from interferometric radar. Radio Sci, 1996, 31: 1449–1485

    Article  Google Scholar 

  17. Papathanassiou K P, Cloude S R. Single-baseline polarimetric SAR interferometry. IEEE Trans Geosci Remote, 2001, 39: 2352–2363

    Article  Google Scholar 

  18. Zhou Y S, Hong W, Wang Y P, et al. Baseline analysis of polarimetric SAR interferometry. In: Wu S J, ed. Asian and Pacific Conference on Synthetic Aperture Radar. Vol 1. Piscataway: IEEE, 2007. 185–188

    Chapter  Google Scholar 

  19. Zhou Y S, Hong W, Cao F, et al. Analysis of temporal decorrelation in dual-baseline PolInSAR vegetation parameter estimation. In: International Geoscience and Remote Sensing Symposium. Vol 2. Piscataway: IEEE, 2008. 473–476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongSheng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Hong, W., Wang, Y. et al. Maximal effective baseline for polarimetric interferometric SAR forest height estimation. Sci. China Inf. Sci. 55, 867–876 (2012). https://doi.org/10.1007/s11432-011-4398-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4398-1

Keywords

Navigation