Skip to main content
Log in

Parameter estimation of moving targets in the SAR system with a low PRF sampling rate

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In the synthetic aperture radar (SAR) system with low pulse repetition frequency (PRF) sampling, it is difficult for the motion parameters estimation of the moving targets, because of the Doppler spectrum ambiguity and Doppler centroid frequency ambiguity of the echo signals. Considering that moving targets are sparsely distributed in the observed scene, their positions and velocities can be reconstructed by using the compressed sensing (CS) technique. In this paper, the range-walk correction are implemented by the Keystone transform and the sparse range-walk correction (SRWC), then the CS technique is proposed to reconstruct motion parameters by processing the azimuth signals of the moving targets. Experiments using the simulated and real data are performed, and the results confirm the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Currie A, Brown M A. Wide-swath SAR. IEEE Proc Radar Sonar Navig, 1992, 139: 122–135

    Google Scholar 

  2. Callaghan G D, Longstaff I D. Wide-swath space-borne SAR and range ambiguity. In: Proceedings of Radar 97, Edinburgh, 1997. 248–252

  3. Callaghan G D, Longstaff I D. Wide-swath space-borne SAR using a quad-element array. IEEE Proc Radar Sonar Navig, 1999, 146: 159–165

    Article  Google Scholar 

  4. Li Z F, Wang H Y, Su T, et al. Generation of wide-swath and high resolution SAR images from Multichannel small spaceborne SAR system. IEEE GRS Lett, 2005, 2: 82–86

    Google Scholar 

  5. Krieger G, Gebert N, Moreira A. Multidimensional waveform encoding for space borne synthetic aperture radar systems. In: Proceedings of the IEEE Waveform Diversity & Design Conference, Pisa, 2007. 282–286

  6. Krieger G, Gebert N, Moreira A. Multidimensional waveform encoding: a new digital beam forming technique for synthetic aperture radar remote sensing. IEEE Trans GRS, 2008, 46: 32–42

    Google Scholar 

  7. Krieger G, Gebert N, Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE GRS Lett, 2004, 1: 260–264

    Google Scholar 

  8. Marques P, Dias J. Moving target trajectory estimation in SAR spatial domain using a single sensor. IEEE Trans Aerosp Electr Sys, 2007, 43: 864–874

    Article  Google Scholar 

  9. Marques P, Dias J. Velocity estimation of fast moving targets using a single SAR sensor. IEEE Trans Aerosp Electr Sys, 2005, 41: 75–89

    Article  Google Scholar 

  10. Zhang X D, Bao Z. Nonstationary Singal Processing. Beijing: National Defense Industries Press, 1998

    Google Scholar 

  11. Li Z F, Bao Z, Wang T. Ground moving target indication for distributed small satellite SAR systems. Acta Electron Sin, 2005, 33: 64–1666

    Google Scholar 

  12. Li F K, Held D N, Curlander J C, et al Doppler parameter extimation for spaceborne synthetic aperture radars. IEEE Trans Geo Remot Sens, 1991, 23: 47–56

    Article  Google Scholar 

  13. Perry R P, DiPietro R C, Fante R L. SAR imaging of moving targets. IEEE Trans Aerosp Electr Sys, 1999, 35: 188–200

    Article  Google Scholar 

  14. Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Norwood MA: Artech House, 2005

    Google Scholar 

  15. Candés E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inf Theor, 2006, 52: 5406–5425

    Article  Google Scholar 

  16. Donoho D. Compressed sensing. IEEE Trans Inf Theor, 2006, 52: 5406–5425

    Article  Google Scholar 

  17. Herman M, Strohmer T. Compressed sensing radar. In: Proceedings of the IEEE Radar Conference, Rome, 2008. 26–30

  18. Grant M, Boyd S, Ye Y. CVX: Matlab Software for Disciplined Convex Programming. http://www.stanford.edu/~boyd/cvx/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wu, Q., Sun, G. et al. Parameter estimation of moving targets in the SAR system with a low PRF sampling rate. Sci. China Inf. Sci. 55, 337–347 (2012). https://doi.org/10.1007/s11432-011-4508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4508-0

Keywords

Navigation