Skip to main content
Log in

Secure quantum report with authentication based on six-particle cluster state and entanglement swapping

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A novel high-efficient secure quantum report with authentication based on six-particle cluster state and entanglement swapping is proposed. In our protocol, using N groups of six-particle cluster state, the legitimate users Bob and Charlie send their secret reports to their boss (Alice), who operates sixteen kinds of unitary operations after receiving the reports. Here, entanglement swapping of cluster states and maximum entanglement state measurement are employed by the communicators. It has been proved that our protocol has high level guarantees and honesty, and the scheme is secure not only against the intercept-and-resend attack but also against disturbance attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984. 175–179

  2. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MathSciNet  MATH  Google Scholar 

  3. Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distributionnetwork with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049–1052

    Article  Google Scholar 

  4. Xue P, Li C F, Guo G C. Conditional efficient multiuser quantum cryptography network. Phys Rev A, 2002, 65: 022317

    Article  Google Scholar 

  5. Acin A, Gisin N, Scarani V. Coherent-pulse implementations of quantum cryptography protocols resistant to particlenumber-splitting attacks. Phys Rev A, 2004, 69: 012309

    Article  Google Scholar 

  6. Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78

    Article  MathSciNet  Google Scholar 

  7. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  Google Scholar 

  8. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

    Article  Google Scholar 

  9. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  Google Scholar 

  10. Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography. Opt Express, 2009, 17: 6540–6549

    Article  Google Scholar 

  11. Chen W, Han Z F, Zhang T, et al. Field experiment on a “star type” metropolitan quantum key distribution network. IEEE Photonics Technol Lett, 2009, 21: 575–577

    Article  Google Scholar 

  12. Chen T Y, Wang J A, Liang H, et al. Metropolitan all-pass and inter-city quantum communication network. Opt Express, 2010, 18: 27217–27225

    Article  Google Scholar 

  13. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  Google Scholar 

  14. Han J J, Sun S H, Liang L M. A three-node QKD network based on a two-way QKD system. Chin Phys Lett, 2011, 28: 040303

    Article  Google Scholar 

  15. Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt Express, 2011, 19: 10387–10409

    Article  Google Scholar 

  16. Mink A, Frankel S, Perlner R. Quantum key distribution (QKD) and commodity security protocols: Introduction and integration. Int J Netw Secur, 2009, 1101–112

  17. Bennett C H, Brassard G, Crpeau C. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys Rev Lett, 1993, 70: 1895–1899

    Article  MathSciNet  MATH  Google Scholar 

  18. Phoenix S, Barnett S, Townsend P, et al. Multi-user quantum cryptography on optical networks, Mod Optics, 1995 42: 1155–1163

    Article  Google Scholar 

  19. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  Google Scholar 

  20. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  Google Scholar 

  21. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149–2153

    Article  Google Scholar 

  22. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum Communication. Front Phys China, 2007, 2: 251–272

    Article  Google Scholar 

  23. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  Google Scholar 

  24. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  Google Scholar 

  25. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  Google Scholar 

  26. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  Google Scholar 

  27. Lu X, Ma Z, Feng D G. Quantum secure direct communication using quantum Calderbank-Shor-Steane error correcting codes. J Softw, 2006, 173: 509–515

    Article  MathSciNet  Google Scholar 

  28. Liu W J, Chen H W, Li Z Q, et al. Efficient quantum secure direct communication with authentication. Chin Phys Lett, 2008, 25: 2354–2357

    Article  Google Scholar 

  29. Gao T, Yan F L, Wang Z X. A simultaneous quantum secure direct communication scheme between the central party and other M parties. Chin Phys Lett, 2005, 22: 2473–2476

    Article  Google Scholar 

  30. Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67–70

    Article  Google Scholar 

  31. Deng F G, Li X H, Li C Y, et al. Multiparty quanutm secret report. Chin Phys Lett, 2006, 23: 1676–1679

    Article  MathSciNet  Google Scholar 

  32. Sheikhehi F, Hantehzadeh M, Naseri M. Secure quantum report with authentication based on GHZ states and entanglement swapping. J Theor Appl Phys, 2011, 4: 39–44

    Google Scholar 

  33. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  Google Scholar 

  34. Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050–2056

    Article  Google Scholar 

  35. Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441–444

    Article  Google Scholar 

  36. Lütkenhaus N. Security against individual attacks for realistic quantum key distribution. Phys Rev A, 2000, 61: 052304

    Article  Google Scholar 

  37. Han F. Entanglement dynamics and transfer in a double Jaynes-Cummings model. Chin Sci Bull, 2010, 55: 1758–1762

    Article  Google Scholar 

  38. Yan T, Yan F L. Quantum key distribution using four-level particles. Chin Sci Bull, 2011, 56: 24–28

    Article  Google Scholar 

  39. Li M, Fei S M, Li-Jost X Q. Bell inequality, separability and entanglement distillation. Chin Sci Bull, 2011, 56: 945–954

    Article  Google Scholar 

  40. Cabello A. Quantum key distribution in the Holevo limit. Phys Rev Lett, 2000, 85: 5635–5638

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Zha, X. & Lan, Q. Secure quantum report with authentication based on six-particle cluster state and entanglement swapping. Sci. China Inf. Sci. 55, 2881–2887 (2012). https://doi.org/10.1007/s11432-012-4704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4704-6

Keywords

Navigation