Skip to main content
Log in

Interactive multi-scale structures for summarizing video content

  • Research Paper
  • Special Focus
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Efficient video summarization leads to facilely exploring video content appropriate to the user’s intention with low cognitive demand. In this paper, we present a novel approach for summarizing videos in the form of multi-scale structures that exhibit different video features at different scale levels and allow exploration of video contents with multi-scale interaction. The semantic relationship between structures is addressed and user intention is also considered and integrated in the summarization and interaction. This paper first introduces the concept of multi-scale structures for summarizing video content and describes three different types of structures that present important features at different scale levels. Furthermore, a continuous zooming interaction for browsing multi-scale structures is provided to facilitate video browsing. Finally, an elaborate user study is conducted showing that user performance on understanding and browsing videos is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang X, Furnas G W. mCVEs: Using cross-scale collaboration to support user interaction with multiscale structures. Presence-Teleoper Virtual Env, 2005, 14: 31–46

    Article  Google Scholar 

  2. Tong L, Hong J Z. Automatic video scene extraction by shot grouping. In: 15th International Conference on Pattern Recognition, Barcelona, 2000. 39–42

    Google Scholar 

  3. Zhai Y, Shah M. Video scene segmentation using Markov chain Monte Carlo. IEEE Trans Multimedia, 2006, 8: 686–697

    Article  Google Scholar 

  4. Liu Y J, Luo X, Xuan Y M, et al. Image retargeting quality assessment. Comput Graph Forum, 2011, 30: 583–592

    Article  Google Scholar 

  5. Gargi U, Kasturi R, Strayer S H. Performance characterization of video-shot-change detection methods. IEEE Trans Circuits Syst Video Technol, 2000, 10: 1–13

    Article  Google Scholar 

  6. Barnes C, Goldman D B, Shechtman E, et al. Video tapestries with continuous temporal zoom. ACM Trans Graph, 2010, 29: 89

    Article  Google Scholar 

  7. Liu Y J, Tang K, Gong W, et al. Industrial design using interpolatory discrete developable surfaces. Comput-Aided Des, 2011, 43: 1089–1098

    Article  Google Scholar 

  8. Ma C X, Liu Y J, Wang H A, et al. Sketch-based annotation and visualization in video authoring. IEEE Trans Multimedia, 2012, 14: 1153–1165

    Article  Google Scholar 

  9. Ueda H, Miyatake T, Summino S, et al. Automatic structure visualization for video editing. In: INTERACT’93, Amsterdam, 1993. 137–141

    Google Scholar 

  10. Shingo U, Jonathan F, et al. Video Manga: generating semantically meaningful video summaries. In: The 7th ACM International Conference on Multimedia (Part 1), Orlando, 1999. 383–392

    Google Scholar 

  11. Collomosse J P, McNeill G, Qian Y. Storyboard sketches for content based video retrieval. In: International Conference on Computer Vision, Kyoto, 2009. 245–252

    Google Scholar 

  12. Goldman D B, Curless B, Salesin D, et al. Schematic storyboarding for video visualization and editing. ACM Trans Graph, 2006, 25: 862–871

    Article  Google Scholar 

  13. Liu Y J, Chen Z, Tang K. Construction of iso-contours, bisectors and Voronoi diagrams on triangulated surfaces. IEEE Trans Pattern Anal Mach Intell, 2011, 33: 1502–1517

    Article  Google Scholar 

  14. Bederson B. Quantum treemaps and bubblemaps for a zoomable image browser. In: The 14th Annual ACM Symposium on User Interface Systems and Technology, Orlando, 2001. 71–80

    Google Scholar 

  15. Shipman F, Girgensohn A, Wilcox L. Generation of interactive multi-level video summaries. In: ACM Multimedia, Berkeley, 2003. 392–401

    Google Scholar 

  16. Furnas G, Bederson B. Space-scale diagrams: understanding multiscale interfaces. In: The ACM Conference on Human Factors in Computing System, Denver, 1995. 234–241

    Chapter  Google Scholar 

  17. Perlin K, Fox D. Pad: an alternative approach to the computer interface. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1993. 57–64

    Google Scholar 

  18. Albrecht J, Car A. GIS analysis for scale-sensitive environmental modelling based on hierarchy theory. In: Dikau R, Saurer H, eds. GIS for Earth Surface Systems. Borntraeger, 1999. 1–23

    Google Scholar 

  19. Reitsma F, Bittner T. Scale in object and process ontologies. In: Kuhn W, Worboys M F, Timpf S, eds. Spatial Information Theory: Foundations of Geographic Information Science. Proceedings of COSIT’03. Berlin: Springer-Verlag, 2003. 13–30

    Chapter  Google Scholar 

  20. Andy C, Amy K, Benjamin B, et al. A review of overview + detail, zooming, and focus + context interfaces. ACM Comput Surv, 2008, 41: 2

    Google Scholar 

  21. Bederson B, Hollan J. Pad++: a zooming graphical interface for exploring alternate interface physics. In: The ACM Symposium of User Interface Software and Technology, Marina del Rey, 1994. 17–26

    Google Scholar 

  22. Bederson B, Meyer J, Good L. Jazz: an extensible zoomable user interface graphics toolkit in Java. In: The ACM Conference on User Interface and Software Technology, San Diego, 2000. 171–180

    Google Scholar 

  23. Bederson B, Grosjean J, Meyer J. Toolkit design for interactive structured graphics. IEEE Trans Softw Eng, 2004, 30: 535–546

    Article  Google Scholar 

  24. Pietriga E. A toolkit for addressing HCI issues in visual language environments. In: IEEE Symposium on Visual Languages and Human-Centric Computing, Dallas, 2005. 145–152

    Google Scholar 

  25. Bederson B, Clamage A, Czerwinski M P, et al. DateLens: a fisheye calendar interface for PDAs. ACM Trans Comput-Hum Interact, 2004, 11: 90–119

    Article  Google Scholar 

  26. Liu Y J, Tang K, Joneja A. Sketch-based free-form shape modelling with a fast and stable numerical engine. Comput Graph, 2005, 29: 778–793

    Article  Google Scholar 

  27. Liu Y J, Luo X, Joneja A, et al. User-adaptive sketch-based 3D CAD model retrieval. IEEE Trans Autom Sci Eng, 2013. doi: 10.1109/TASE.2012.2228481

    Google Scholar 

  28. Liu Y J, Ma C X, Zhang D L. Easytoy: a plush toy design system using editable sketch curves. IEEE Comput Graph Appl, 2011, 31: 49–57

    Article  Google Scholar 

  29. Simoncelli E P, Olshausen B. Natural image statistics and neural representation. Annu Rev Neurosci, 2001, 24: 1193–1216

    Article  Google Scholar 

  30. Kraaij W, Smeaton A, OVER P, et al. Trecvid 2004—an overview. In: TRECVID 2004-Text REtrieval Conference TRECVID Workshop, Gaithersburg, 2004

  31. Harel J, Koch C, Perona P. Graph-based visual saliency. In: NIPS’2006, Vancouver, 2006. 545–552

    Google Scholar 

  32. Xipeng S, Matthew B, Jiebo L, et al. Multilabel machine learning and its application to semantic scene classification. In: Storage and Retrieval Methods and Applications for Multimedia’2004, San Jose, 2004. 188–199

    Google Scholar 

  33. Heng D C, Xi H J, Angela S, et al. Color image segmentation: advances and prospects. Pattern Recognit, 2001, 4: 2259–2281

    Google Scholar 

  34. Teuvo K. Self-Organizing Maps. 3rd ed. Berlin: Springer, 2001

    MATH  Google Scholar 

  35. Haykin S. Neural Network: A Comprehensive Foundation. 2nd ed. New York: Prentice-Hall, 1999

    MATH  Google Scholar 

  36. Kang H, Lee S, Chui C K. Coherent line drawing. In: Proceedings of the 5th International Symposium on Non-Photorealistic Animation and Rendering, San Diego, 2007. 43–50

    Google Scholar 

  37. Bhat P, Zitnick C L, Cohen M, et al. GradientShop: a gradient-domain optimization framework for image and video filtering. ACM Trans Graph, 2010, 29: 10

    Article  Google Scholar 

  38. Rubine D. Specifying gestures by example. ACM SIGGRAPH Comput Graph, 1991, 25: 329–337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CuiXia Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Ma, C. Interactive multi-scale structures for summarizing video content. Sci. China Inf. Sci. 56, 1–12 (2013). https://doi.org/10.1007/s11432-013-4833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4833-6

Keywords

Navigation