Skip to main content
Log in

Hierarchical clustering driven by cognitive features

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

For data sets of arbitrary shapes and densities, the existing clusterings have much space to be improved to obtain better results. In this paper, clustering is considered as a cognitive problem, and cognitive features are of vital importance to clustering. In combination with psychological experiment, we propose three cognitive features of clustering and model them as a flexible similarity measurement. Meanwhile a new clustering framework is put forward to integrate the cognitive features by employing the similarity measurement. The two attractive advantages are its low complexity and fitness for various types of data sets, such as data sets of different shapes and densities. Some synthetic and real data sets are employed to exhibit the superiority of the new clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veryard R. Pragmatic Data Analysis. England: Blackwell, 1984

    Google Scholar 

  2. Dubes R C, Jain A K. Clustering techniques: the user’s dilemma. Pattern Recog, 1976, 8: 247–260

    Article  Google Scholar 

  3. Jain A K, Murty M N, Flynn P J. Data clustering: a review. ACM Comput Surv, 1999, 31: 264–323

    Article  Google Scholar 

  4. Ball G H, Hall D J. A clustering technique for summarizing multivariate data. Neural Comput, 1967, 12: 153–155

    Google Scholar 

  5. Blatt M, Wiseman S, Domany E. Data clustering using a model granular magnet. Neural Comput, 1997, 9: 1805–1847

    Article  Google Scholar 

  6. Li X B, Tian Z. Multiscale stochastic hierarchical image segmentation by spectral clustering. Sci China Inf Sci, 2007, 50: 198–211

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhatia S K, Deogun J S. Conceptual clustering in information retrieval. IEEE Trans Syst Man Cybern Part B-Cybern, 1998, 28: 427–435

    Article  Google Scholar 

  8. McQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability (SMSP). California: California University Press, 1967. 281–297

    Google Scholar 

  9. Yousri N A, Kamel M S, Ismail M A. A distance-relatedness dynamic model for clustering high dimensional data of arbitrary shapes and densities. Pattern recog, 2009, 42: 1193–1209

    Article  MATH  Google Scholar 

  10. Ng A Y, Jordan M, Weiss Y. On spectral clustering analysis and algorithm. In: Advances in Neural Information Processing Systems (NIPS). British Columbia: MIT Press, 2002. 849–856

    Google Scholar 

  11. Leung Y, Zhang J S, Xu Z B. Clustering by scale space filtering. IEEE Trans Patt Anal Mach Intell, 2000, 22: 1396–1410

    Article  Google Scholar 

  12. Comaniciu D, Meer P. Mean shift: a robust approach towards feature space analysis. IEEE Trans Patt Anal Mach Intell, 2002, 24: 603–619

    Article  Google Scholar 

  13. Chen J J, Zhang S F, An G C. A generalized mean shift tracking algorithm. Sci China Inf Sci, 2011, 54: 2373–2385

    Article  MATH  Google Scholar 

  14. Mulier F, Cherkassky V. Self-organization as an iterative kernel smoothing process. Neurocomputing, 1995, 7: 1165–1177

    Google Scholar 

  15. Shi J B, Malik J. Normalized cuts and image segmentation. IEEE Trans Patt Anal Mach Intell, 2000, 22: 888–905

    Article  Google Scholar 

  16. Santos J M, Marqures J. Human clustering on bi-dimensional data: an assessment. Technical Report 1, INEB-Instituto de Engenharia Biomédica, 2005

    Google Scholar 

  17. Carreira-Perpinan M A. Fast nonparametric clustering with Gaussian blurring mean-shift. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), Pittsburgh, 2006. 153–160

    Chapter  Google Scholar 

  18. Navon D. Forest before trees: the precedence of global features in visual perception. Cogn Psychol, 1997, 9: 353–383

    Article  Google Scholar 

  19. Ester M, Kriegel H P, Sander J, et al. DBScan: a density-based algorithm for discovering clusters in large data bases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDDM), Portland, 1996. 226–231

    Google Scholar 

  20. Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290: 2319–2323

    Article  Google Scholar 

  21. Li C Z, Xu Z B, Yuan Y B. Dissimilarity based on direction information and its application. In: Proceedings of 4th International Conference Image and Signal Processing (CISP), Shanghai, 2011. 139–143

    Google Scholar 

  22. Linderberg T. Scale space for discrete signals. IEEE Trans Patt Anal Mach Intell, 1990, 12: 234–254

    Article  Google Scholar 

  23. Karypis G, Han E H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer, 1999, 32: 68–75

    Article  Google Scholar 

  24. Strehl A, Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J Mach Learn Res, 2003, 3: 583–617

    MATH  MathSciNet  Google Scholar 

  25. Mori G. Guiding model search using segmentation. In: IEEE International Conference on Computer Vision (ICCV), Beijing, 2005. 1417–1423

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunZhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Xu, Z., Qiao, C. et al. Hierarchical clustering driven by cognitive features. Sci. China Inf. Sci. 57, 1–14 (2014). https://doi.org/10.1007/s11432-013-4858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4858-x

Keywords

Navigation