Skip to main content
Log in

Self-adaptive spatial image denoising model based on scale correlation and SURE-LET in the nonsubsampled contourlet transform domain

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A novel self-adaptive image denoising model based on scale correlation and Stein’s unbiased risk estimate-linear expansion of thresholds (SURE-LET) in the nonsubsampled contourlet transform domain is proposed in this paper. First we implement the multidimensional and translation invariant decomposition for spatial images by the nonsubsampled contourlet transform, and establish the image cross-scale description structure. Then combining the scale correlation, we make improvements for the existing SURE-LET denoising idea and establish the self-adaptive denoising mechanism. The scale correlation calculation is needed for the coefficients at different scales and sub-bands to determine whether the coefficients are retained or processed with the adaptive SURE-LET threshold shrinkage. And meanwhile a new local context self-adaptive threshold strategy is proposed in the process of scale correlation calculation. Experimental results both on spatial images and standard images demonstrate that the proposed algorithm performs significantly better in terms of both the visual subjective evaluation and the quantitative objective evaluation. The method can achieve better noise suppression, and effectively retain image edge details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X M. The application of contourlet transform in image denoise and edge detection. Dissertation of Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2011

    Google Scholar 

  2. Shi J L, Liu Z Y, Tian J. Bilateral signal variance estimation for wavelet-domain image denoising. Sci China Inf Sci, 2013, 56: 062308

    MathSciNet  Google Scholar 

  3. Pan Y. Image denoising research based on wavelet transform. Dissertation of Doctoral Degree. Changchun: Jilin University, 2010

    Google Scholar 

  4. Howlader T, Chaubey Y P. Noise reduction of cDNA microarray images using complex wavelets. IEEE Trans Image Process, 2010, 19: 1953–1967

    Article  MathSciNet  Google Scholar 

  5. Luisier F, Blu T, Unser M. A new sure approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans Image Process, 2007, 16: 593–606

    Article  MathSciNet  Google Scholar 

  6. Zhang Y G, Zhang B L, Lu W J. Image denoising and enhancement based on adaptive wavelet thresholding and mathematical morphology. In: Proceedings of International Congress on Image and Signal Processing, Quebec, 2010. 693–697

    Google Scholar 

  7. Gupta K K, Gupta R. Feature adaptive wavelet shrinkage for image denoising. In: International Conference on Signal Processing, Communications and Networking, Chennai, 2007. 81–85

    Google Scholar 

  8. Raphan M, Simoncelli E P. Optimal denoising in redundant representations. IEEE Trans Image Process, 2008, 17: 1342–1352

    Article  MathSciNet  Google Scholar 

  9. Hirakawa K, Wolfe P J. Efficient multivariate skellam shrinkage for denoising photon-limited image data: an empirical Bayes approach. In: Proceedings of IEEE International Conference on Image Processing, Cairo, 2009. 2961–2964

    Google Scholar 

  10. Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans Image Process, 2000, 9: 1522–1531

    Article  MATH  MathSciNet  Google Scholar 

  11. Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process, 2000, 9: 1532–1546

    Article  MATH  MathSciNet  Google Scholar 

  12. Blu T, Luisier F. The SURE-LET approach to image denoising. IEEE Trans Image Process, 2007, 16: 2778–2786

    Article  MathSciNet  Google Scholar 

  13. Luisier F, Vonesch C, Blu T, et al. Fast interscale wavelet denoising of Poisson-corrupted images. Signal Process, 2010, 90: 415–427

    Article  MATH  Google Scholar 

  14. Luisier F, Blue T, Unser M. Image denoising in mixed Poisson-Gaussian noise. IEEE Trans Image Process, 2011, 20: 696–708

    Article  MathSciNet  Google Scholar 

  15. Starck J L, Cands E J, Donoho D L. The curvelet transform for image denoising. IEEE Trans Image Process, 2002, 11: 670–684

    Article  MATH  MathSciNet  Google Scholar 

  16. Shan H, Yang H Z. Curvelet based Stein’s unbiased risk estimate for image denoising. J Tsinghua Univ, 2010, 50: 1307–1310

    MATH  MathSciNet  Google Scholar 

  17. Zhang B, Fadili J M, Starck J L. Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Trans Image Process, 2008, 17: 1093–1108

    Article  MathSciNet  Google Scholar 

  18. Do M N, Vetterli M. The Contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process, 2005, 14: 2778–2786

    Article  MathSciNet  Google Scholar 

  19. Wang X H, Chen M Y, Song C M, et al. Contourlet HMT model with directional feature. Sci China Inf Sci, 2012, 55: 1563–1578

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhou X G, Li K Y. A new method using DCT based on Contourlet transform for image denoising. J Image Graph, 2009, 14: 2212–2216

    Google Scholar 

  21. Da Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process, 2006, 15: 3089–3101

    Article  Google Scholar 

  22. Li S T, Yang B. Hybrid multiresolution method for multisensor multimodal image fusion. IEEE Sens J, 2010, 10: 1519–1526

    Article  Google Scholar 

  23. Zhu W, Li G H, Tu D. A scale correlation image denoising method based on the second generation Curvelet transform. J Image Graph, 2008, 13: 2281–2285

    Google Scholar 

  24. Wang F N, Liang D, Cheng Z Y, et al. A method of image denoising based on nonsubsampled pyramid contourlet transform. J Image Graph, 2009, 14: 458–462

    Google Scholar 

  25. Li X F, Xu J, Luo J J, et al. Intensity image denoising for laser active imaging system using nonsubsampled contourlet transform and SURE approach. Int J Light Electron Opt, 2012, 123: 808–813

    Article  Google Scholar 

  26. Shensa M J. The discrete wavelet transform: wedding the à trous and Mallat algorithms. IEEE Trans Signal Process, 1992, 40: 2464–2482

    Article  MATH  Google Scholar 

  27. Chang S, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process, 2000, 9: 1532–1546

    Article  MATH  MathSciNet  Google Scholar 

  28. Sendur L, Selesnick I W. Bivariate shrinkage with local variance estimation. IEEE Signal Process Lett, 2002, 9: 438–441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunPing Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Du, J. & Liu, H. Self-adaptive spatial image denoising model based on scale correlation and SURE-LET in the nonsubsampled contourlet transform domain. Sci. China Inf. Sci. 57, 1–15 (2014). https://doi.org/10.1007/s11432-013-4943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4943-1

Keywords

Navigation