Skip to main content
Log in

A high speed multi-level-parallel array processor for vision chips

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a high speed multi-level-parallel array processor for programmable vision chips. This processor includes 2-D pixel-parallel processing element (PE) array and 1-D row-parallel row processor (RP) array. The two arrays both operate in a single-instruction multiple-data (SIMD) fashion and share a common instruction decoder. The sizes of the arrays are scalable according to dedicated applications. In PE array, each PE can communicate not only with its nearest neighbor PEs, but also with the next near neighbor PEs in diagonal directions. This connection can help to speed up local operations in low-level image processing. On the other hand, global operations in mid-level processing are accelerated by the skipping chain and binary boosters in RP array. The array processor was implemented on an FPGA device, and was successfully tested for various algorithms, including real-time face detection based on PPED algorithm. The results show that the image processing speed of proposed processor is much higher than that of the state-of-the-arts digital vision chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizawa K. Computational sensors-vision VLSI. IEICE Trans Inf Syst, 1999, 82: 580–588

    Google Scholar 

  2. Ishikawa M, Ogawa K, Komoro T, et al. A CMOS vision chip with SIMD processing element array for 1 ms image processing. In: Proceedings of IEEE International Solid State Circuits Conference(ISSCC), San Francisco, 1999. 206–207

    Google Scholar 

  3. Ohta J. Smart CMOS Image Sensors and Applications. New York: CRC Press, 2007. 1–7

    Google Scholar 

  4. Komoro T, Ishii I, Ishikawa M, et al. A digital vision chip specialized for high-speed target tracking. IEEE Trans Electron Dev, 2003, 50: 191–199

    Article  Google Scholar 

  5. Oike Y, Ikeda M, Asada K. A 375 × 365 high-speed 3-D range-finding image sensor using row-parallel search architecture and multisampling technique. IEEE J Solid-State Circ, 2005, 40: 444–453

    Article  Google Scholar 

  6. Ishii I, Yamamoto K, Kubozono M. Higher order autocorrelation vision chip. IEEE Trans Electron Dev, 2006, 53: 1797–1804

    Article  Google Scholar 

  7. Stoppa D, Pancheri L, Scandiuzzo M, et al. A CMOS 3-D imager based on single photon avalanche diode. IEEE Trans Circ Syst-I, 2007, 54: 4–12

    Article  Google Scholar 

  8. Leon-Salas W D, Balkir S, Sayood K, et al. A CMOS imager with focal plane compression using predictive coding. IEEE J Solid-State Circ, 2007, 42: 2555–2572

    Article  Google Scholar 

  9. Choi J, Han S W, Kim S J, et al. A spatial-temporal multiresolution CMOS image sensor with adaptive frame rates for tracking the moving objects in region-of-interest and suppressing motion blur. IEEE J Solid-State Circ, 2007, 42: 2978–2989

    Article  Google Scholar 

  10. Chi Y M, Mallik U, Clapp M A, et al. CMOS camera with in-pixel temporal change detection and ADC. IEEE J Solid-State Circ, 2007, 42: 2187–2196

    Article  Google Scholar 

  11. Kim D, Han G. A 200 μs processing time smart image sensor for an eye tracker using pixel-level analog image processing. IEEE J Solid-State Circ, 2009, 44: 2581–2590

    Article  Google Scholar 

  12. Horiuchi T K. A low-power visual-horizon estimation chip. IEEE Trans Circ Syst-I, 2009, 56: 1566–1575

    Article  MathSciNet  Google Scholar 

  13. Zhao B, Zhang X, Chen S. A 64 × 64 CMOS image sensor with on-chip moving object detection and localization. IEEE Trans Circ Syst Vid, 2012, 22: 581–588

    Article  Google Scholar 

  14. Komuro T, Kagami S, Ishikawa M. A dynamically reconfigurable SIMD processor for a vision chip. IEEE J Solid-State Circ, 2004, 39: 265–268

    Article  Google Scholar 

  15. Miao W, Lin Q Y, Zhang W C, et al. A programmable SIMD vision chip for real-time vision applications. IEEE J Solid-State Circ, 2008, 43: 1470–1479

    Article  Google Scholar 

  16. Yamashita H, Sodini C. A CMOS imager with a programmable bit-serial column-parallel SIMD/MIMD processor. IEEE Trans Electron Dev, 2009, 56: 2534–2545

    Article  Google Scholar 

  17. Cheng C C, Lin C H, Li C T, et al. iVisual: an intelligent visual sensor SoC with 2790 fps image sensor and 205 GOPS/W vision processor. IEEE J Solid-State Circ, 2009, 44: 127–135

    Article  Google Scholar 

  18. Zhang W C, Fu Q Y, Wu N J. A programmable vision chip based on multiple levels of parallel processors. IEEE J Solid-State Circ, 2011, 46: 2132–2147

    Article  Google Scholar 

  19. Lopich A, Dudek P. A SIMD cellular processor array vision chip with asynchronous processing capabilities. IEEE Trans Circuits Syst-I, 2011, 58: 2420–2431

    Article  MathSciNet  Google Scholar 

  20. Rodriguez-Vazquez A, Linan-Cembrano G, Carranza L, et al. ACE16k: the 3rd generation of mixed-signal SIMD-CNN ACE chips towards VSoCs. IEEE Trans Circ Syst-I, 2004, 51: 851–863

    Article  Google Scholar 

  21. Dudek P, Hicks P J. A general-purpose processor-per-pixel analog SIMD vision chip. IEEE Trans Circuits Syst-I, 2005, 52: 13–20

    Article  Google Scholar 

  22. Dubois J, Ginhac D, Paindavoine M, et al. A 10000 fps CMOS sensor with massively parallel image processing. IEEE J Solid-State Circ, 2008, 43: 706–717

    Article  Google Scholar 

  23. Lin Q Y, Miao W, Zhang W C. A 1000 frame/s programmable vision chip with variable resolution and row-pixel-mixed parallel image processors. Sensors, 2009, 9: 5933–5951

    Article  Google Scholar 

  24. Gonzalez R C, Woods R E. Digital Image Processing. 3rd ed. NJ: Pearson Education, 2009. 182–184

    Google Scholar 

  25. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal, 1990, 12: 629–639

    Article  Google Scholar 

  26. Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Computer Vision, 2004, 60: 91–110

    Article  Google Scholar 

  27. Smith S M, Brady J M. SUSAN-a new approach to low level image processing. Int J Computer Vision, 1997, 23: 45–78

    Article  Google Scholar 

  28. Yaga M, Shibata T. An image representation algorithm compatible with neural-associative-processor-based hardware recognition system. IEEE Trans Neural Network, 2003, 14: 1144–1161

    Article  Google Scholar 

  29. Shi C, Wu N J, Wang Z H. A high-speed vision processor based on pixel-parallel PE array and its applications. In: Proceedings of IEEE Youth Conference on Information Computing and Telecommunications, Beijing, 2010. 57–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NanJian Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Yang, J., Wu, N. et al. A high speed multi-level-parallel array processor for vision chips. Sci. China Inf. Sci. 57, 1–12 (2014). https://doi.org/10.1007/s11432-013-4969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4969-4

Keywords

Navigation