Skip to main content
Log in

Robust sparse principal component analysis

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The model for improving the robustness of sparse principal component analysis (PCA) is proposed in this paper. Instead of the l 2-norm variance utilized in the conventional sparse PCA model, the proposed model maximizes the l 1-norm variance, which is less sensitive to noise and outlier. To ensure sparsity, l p -norm (0 ⩽ p ⩽ 1) constraint, which is more general and effective than l 1-norm, is considered. A simple yet efficient algorithm is developed against the proposed model. The complexity of the algorithm approximately linearly increases with both of the size and the dimensionality of the given data, which is comparable to or better than the current sparse PCA methods. The proposed algorithm is also proved to converge to a reasonable local optimum of the model. The efficiency and robustness of the algorithm is verified by a series of experiments on both synthetic and digit number image data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jollife I. Principal Component Analysis. New York: Springer-Verlag, 1986

    Book  Google Scholar 

  2. Jollife I. Rotation of principal components: choice of normalization constraints. J Appl Stat, 1995, 22: 29–35

    Article  Google Scholar 

  3. Cadima J, Jollife I. Loadings and correlations in the interpretation of principal components. J Appl Stat, 1995, 22: 203–214

    Article  Google Scholar 

  4. Tibshirani R. Regression shrinkage and selection via the Lasso. J Roy Statist Soc Ser B Met, 1996, 58: 267–288

    MATH  MathSciNet  Google Scholar 

  5. Jollife I, Uddin M. A modied principal component technique based on the Lasso. J Comput Graph Stat, 2003, 12: 531–547

    Article  Google Scholar 

  6. Zou H, Hastie T, Tibshirani R. Sparse principal component analysis. J Comput Graph Stat, 2006, 15: 265–286

    Article  MathSciNet  Google Scholar 

  7. d’Aspremont A, El Ghaoui L, Jordan M I, et al. A direct formulation for sparse PCA using semidefinite programming. SIAM Rev, 2007, 49: 434–448

    Article  MATH  MathSciNet  Google Scholar 

  8. Shen H P, Huang J Z. Sparse principal component analysis via regularized low rank matrix approximation. J Multivariate Anal, 2008, 99: 1015–1034

    Article  MATH  MathSciNet  Google Scholar 

  9. Sigg C D, Buhmann J M. Expectation maximization for sparse and non-negative PCA. In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, 2008. 960–967

    Google Scholar 

  10. Journée M, Nesterov Y, Richtárik P, et al. Generalized power method for sparse principal component analysis. J Mach Learn Res, 2010, 11: 517–55

    MATH  MathSciNet  Google Scholar 

  11. Sriperumbudur B K, Torres D A, Lanckriet G R. Sparse eigen methods by D.C. programming. In: Proceedings of the 24th International Conference on Machine learning, Corvallis, 2007. 831–838

    Google Scholar 

  12. Lu Z S, Zhang Y. An augmented Lagrangian approach for sparse principal component analysis. Math Program, 2012, 135: 149–193.

    Article  MATH  MathSciNet  Google Scholar 

  13. Moghaddam B, Weiss Y, Avidan S. Spectral bounds for sparse PCA: exact and greedy algorithms. In: Proceedings of the 19th Conference on Neural Information Processing Systems, Vancouver, 2005. 915–922

    Google Scholar 

  14. d’Aspremont A, Bach F R, Ghaoui L E. Optimal solutions for sparse principal component analysis. J Mach Learn Res, 2008, 9: 1269–1294

    MATH  MathSciNet  Google Scholar 

  15. Croux C, Filzmoser P, Fritz H. Robust sparse principal component analysis. Technometrics, 2013, 55: 202–214

    Article  MathSciNet  Google Scholar 

  16. Meng D Y, Zhao Q, Xu Z B. Improve robustness of sparse PCA based on L 1-norm maximization. Patt Recog, 2012, 45: 487–497

    Article  MATH  Google Scholar 

  17. Kwak N. Principal component analysis based on L 1-norm maximization. IEEE Trans Patt Anal Mach Intell, 2008, 30: 1672–1680

    Article  Google Scholar 

  18. De la Torre F, Black M J. A framework for robust subspace learning. Int J Comput Vis, 2003, 54: 117–142

    Article  MATH  Google Scholar 

  19. Aanas H, Fisker R, Astrom K, et al. Robust factorization. IEEE Trans Patt Anal Mach Intell, 2002, 24: 1215–1225

    Article  Google Scholar 

  20. Ding C, Zhou D, He X, et al. R1-PCA: rotational invariant L 1-norm principal component analysis for robust subspace factorization. In: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, 2006. 281–288

    Google Scholar 

  21. Baccini A, Besse P, Falguerolles A D. A L 1-norm PCA and a heuristic approach. In: Diday E, Lechevalier Y, Opitz O, eds. Ordinal and Symbolic Data Analysis. New York: Springer-Verlag, 1996. 359–368

    Chapter  Google Scholar 

  22. Ke Q, Kanade T. Robust L 1 norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C.: IEEE, 2005. 739–746

    Google Scholar 

  23. Marjanovic G, Solo V. On L q optimization and matrix completion. IEEE Trans Signal Process, 2012, 60: 5714–5724

    Article  MathSciNet  Google Scholar 

  24. Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Appl Comput Harmonic Anal, 2009, 27: 265–274

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu Z B, Chang X Y, Xu F M, et al. L 1/2-regularization: a thresholding representation theory and a fast solver. IEEE Trans Neural Netw Learn Syst, 2012, 23: 1013–1027

    Google Scholar 

  26. Xu Z B, Zhang H, Wang Y, et al. L 1/2-regularization. Sci China Inf Sci, 2010, 53: 1159–1169

    Article  MathSciNet  Google Scholar 

  27. Zeng J S, Fang J, Xu Z B. Sparse SAR imaging based on L 1/2 regularization. Sci China Inf Sci, 2012, 55: 1755–1775

    Article  MATH  MathSciNet  Google Scholar 

  28. Xu Z B, Guo H L, Wang Y, et al. Representative of L 1/2 regularization among L q (0 < q ⩽ 1) regularizations: an experimental study based on phase diagram. Acta Autom Sin, 2012, 38: 1225–1228

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DeYu Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Meng, D. & Xu, Z. Robust sparse principal component analysis. Sci. China Inf. Sci. 57, 1–14 (2014). https://doi.org/10.1007/s11432-013-4970-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4970-y

Keywords

Navigation