Skip to main content
Log in

An efficient spherical mapping algorithm and its application on spherical harmonics

  • Research Paper
  • Special Focus
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The sphere is a natural and seamless parametric domain for closed genus-0 surfaces. We introduce an efficient hierarchical optimization approach for the computation of spherical parametrization for closed genus-0 surfaces by minimizing a nonlinear energy balancing angle and area distortions. The mapping results are bijective and lowly distorted. Our algorithm converges efficiently and is suitable to manipulate large-scale geometric models. We demonstrate and analyze the effectiveness of our mapping in spherical harmonics decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang Y L, Kim J, Luo F, et al. Optimal surface parameterization using inverse curvature map. IEEE Trans Visual Comput Graph, 2008, 14: 1054–1066

    Article  Google Scholar 

  2. Li X, Bao Y F, Guo X H, el al. Globally optimal surface mapping for surfaces with arbitrary topology. IEEE Trans Visual Comput Graph, 2008, 14: 805–819

    Article  Google Scholar 

  3. Floater M S, Hormann K. Surface parameterization: a tutorial and survey. In: Dodgson N A, Floater M S, Sabin M A, eds. Advances in Multiresolution for Geometric Modelling. Berlin/Heidelberg: Springer-Verlag, 2005. 157–186

    Chapter  Google Scholar 

  4. Gu X F, Yau S T. Global conformal surface parameterization. In: Symposium on Geometry Processing, Aachen, 2003. 127–137

    Google Scholar 

  5. Li X, He Y, Gu X F, et al. Curves-on-surface: a general shape comparison framework. In: Proceedings of IEEE Shape Modeling International, Matsushima, 2006. 352–357

    Google Scholar 

  6. Zayer R, Rossl C, Seidel H. Curvilinear spherical parameterization. In: Proceedings of IEEE Shape Modeling International, Matsushima, 2006, 57–64

    Google Scholar 

  7. Praun E, Hoppe H. Spherical parametrization and remeshing. ACM Trans Graph, 2003, 22: 340–349

    Article  Google Scholar 

  8. Sander P V, Snyder J, Gortler S, et al. Texture mapping progressive meshes. In: SIGGRAPH, Los Angeles, 2001. 409–416

    Google Scholar 

  9. Friedel I, Schröder P, Desbrun M. Unconstrained spherical parameterization. In: SIGGRAPH Sketches, Los Angeles, 2005

    Google Scholar 

  10. Wan S H, Ye T F, Li M Q, et al. Efficient spherical parametrization using progressive optimization. In: Proceedings of Computational Visual Media Conference, Beijing, 2012. 170–177

    Chapter  Google Scholar 

  11. Hormann K, Greiner G. Mips: an efficient global parametrization method. In: Laurent P J, Sablonniere P, Schumaker L L, eds. Curve and Surface Design: Saint-Malo 1999. Nashville: Vanderbilt University Press, 2000. 153–162

    Google Scholar 

  12. Hoppe H. Progressive meshes. In: SIGGRAPH, New Orleans, 1996. 99–108

    Google Scholar 

  13. Nocedal J, Wright S J. Numerical Optimization. 2nd ed. Berlin: Springer, 2006

    MATH  Google Scholar 

  14. Lee D T, Preparata F P. An optimal algorithm for finding the kernel of a polygon. J ACM, 1979, 26: 415–421

    Article  MathSciNet  MATH  Google Scholar 

  15. Wan S H, Ye T F, Zhang H C, et al. Hierarchically Optimizing Spherical Mapping. Technical Report. School of EECS, Louisiana State University, 2012

    Google Scholar 

  16. Cao J, Li X, Chen Z G, et al. Spherical DCB-spline surfaces with hierarchical and adaptive knot insertion. IEEE Trans Visual Comput Graph, 2012, 18: 1290–1303

    Article  Google Scholar 

  17. Wang H Y, He Y, Li X, et al. Polycube splines. In: Proceedings of ACM Symposium on Solid and Physical Modeling. New York: ACM, 2007. 241–251

    Google Scholar 

  18. Wan S H, Yin Z, Zhang K, et al. A topology-preserving optimization algorithm for polycube mapping. Comput Graph, 2011, 35: 639–649

    Article  Google Scholar 

  19. Li X, Gu X F, Qin H. Surface matching using consistent pants decomposition. In: Proceedings of Symposium on Solid and Physical Modeling, Stony Brook, 2008. 125–136

    Google Scholar 

  20. Li X, Guo X H, Wang H Y, et al. Harmonic volumetric mapping for solid modeling applications. In: Symposium on Solid and Physical Modeling, Beijing, 2007. 109–120

    Google Scholar 

  21. Li X, Guo X H, Wang H Y, et al. Meshless harmonic volumetric mapping using fundamental solution methods. IEEE Trans Autom Sci Eng, 2009, 6: 409–422

    Article  Google Scholar 

  22. Li X, Xu H H, Wan S H, et al. Feature-aligned harmonic volumetric mapping using MFS. Comput Graph, 2010, 34: 242–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, S., Ye, T., Li, M. et al. An efficient spherical mapping algorithm and its application on spherical harmonics. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-013-4992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4992-5

Keywords

Navigation