Skip to main content
Log in

Research achievements on the new generation Internet architecture and protocols

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Despite the great success achieved by the Internet, it has been facing increasingly severe technical challenges that include address exhaustion, low-level network security and trustworthiness, weak quality-of-service control capability, limited bandwidth, and poor support toward mobility. In this paper we summarize the principal challenges facing the current Internet, introduce the research status of the future Internet, analyze the principal design goals of the new generation Internet evaluation methods and models of the present Internet architecture, introduce the research achievements made under the new generation Internet architecture in detail, and propose our next-step research priorities and perspectives in the face of an increasing number of innovative Internet applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koponen T, Shenker S, Balakrishnan H, et al. Architecting for Innovation. ACM SIGCOMM Comput Commun Rev, 2011, 41: 24–36

    Article  Google Scholar 

  2. Pan J, Paul S, Jain R. A survey of the research on future internet architectures. IEEE Commun Mag, 2011, 49: 26–36

    Article  Google Scholar 

  3. Rexford J, Dovrolis C. Future Internet architecture: clean-slate versus evolutionary research. Commun ACM, 2010, 53: 36–40

    Article  Google Scholar 

  4. Feldmann A. Internet clean-slate design: what and why? ACM SIGCOMM Comput Commun Rev, 2007, 37: 59–64

    Article  Google Scholar 

  5. Dovrolis C, Streelman J T. Evolvable network architectures: what can we learn from biology? ACM SIGCOMM Comput Commun Rev, 2010, 40: 72–77

    Article  Google Scholar 

  6. Dovrolis C. What would Darwin think about clean-slate architectures? ACM SIGCOMM Comput Commun Rev, 2008, 38: 29–34

    Article  Google Scholar 

  7. Shin M K, Nam K H, Kang M, et al. Formal specification framework for software-defined networks (SDN), draft-shinsdn-formal-specification-03. IETF Internet-Draft, 2013

    Google Scholar 

  8. Blumenthal M S, Clark D D. Rethinking the design of the Internet: the end-to-end arguments vs. the brave new world. ACM Trans Internet Technol, 2001, 1: 70–109

    Article  Google Scholar 

  9. Wu J, Liu Y, Wu Q. Theoretical research progress in new-generation Internet architecture. Sci China Ser F-Inf Sci, 2008, 51: 1634–1660

    Article  Google Scholar 

  10. Liu Y, Wu J, Wu Q, et al. Recent Progress in the Study of the Next Generation Internet in China. Phil Trans Roy Soc A-Math Phy Eng Sci, 2013, 37: 20120387

    Article  Google Scholar 

  11. Xu K, Xu M, Li Q, et al. Analysis and case study on multi-dimensional scalability of Internet architecture. Sci China Ser F-Inf Sci, 2008, 51: 1661–1680

    Article  Google Scholar 

  12. Wu J, Lin S, Xu K, et al. Advances in evolvable new generation internet architecture research (in Chinese). Chin J Comput, 2012, 35: 1094–1108

    Google Scholar 

  13. Clark D D. The design philosophy of the DARPA Internet protocols. ACM SIGCOMM Comput Commun Rev, 1995, 25: 102–111

    Article  Google Scholar 

  14. Kurose J. Networking: successes, new challenges, and an expanding waist, as the field approaches 40. In: IEEE INFOCOM 2004 (keynote talk), 2004

    Google Scholar 

  15. Xu K, Zhu M, Lin C. Internet Architecture Evaluation models mechanisms and methods (in Chinese). Chin J Comput, 2012, 35: 1–22

    Article  Google Scholar 

  16. Xu K, Zhu M, Wang N, et al. The 2ACT model-based evaluation for in-network caching mechanism. In: Proceedings of IEEE Symposium on Computers and Communications (ISCC), 2013.

    Google Scholar 

  17. Wu J, Ren G, Li X. Source address validation: architecture and protocol design. In: Proceedings of IEEE International Conference on Network Protocols, Beijing, 2007. 276–283

    Google Scholar 

  18. Wu J, Ren G, Li X. Building a next generation Internet with source address validation architecture. Sci China Ser F-Inf Sci, 2008, 51: 1681–1691

    Article  Google Scholar 

  19. Wu J, Bi J, Li X, et al. A Source Address Validation Architecture (Sava) Testbed and Deployment Experience. IETF RFC 5210, 2008

  20. Wu J, Bi J, Bagnulo M, et al. Source Address Validation Improvement Framework. draft-ietf-savi-framework-06. IETF Internet-Draft, 2011

  21. Bi J, Wu J, Yao G, et al. SAVI Solution for DHCP. draft-ietf-savi-dhcp-16. IETF Internet-Draft, 2013

    Google Scholar 

  22. Bi J, Yao G, Halpern J, et al. SAVI for Mixed Address Assignment Methods Scenario. draft-ietf-savi-mix-04. IETF Internet-Draft, 2013

  23. Bagnulo M, Garcia-Martinez A. SEND-based Source-Address Validation Implementation. draft-ietf-savi-send-10. IETF Internet-Draft, 2013

    Google Scholar 

  24. Zhang D, Nallur P, Wasserman M. Cryptographically Generated Address (CGA) Extension Header for Internet Protocol version 6 (IPv6). draft-dong-savi-cga-header-03. IETF Internet-Draft, 2010

    Google Scholar 

  25. Kuptsov D, Gurtov A, Bi J. SAVAH: Source Address Validation Architecture with Host Identity Protocol. draftkuptsov-sava-hip-01. IETF Internet-Draft, 2009

    Google Scholar 

  26. Levy-Abegnoli E. Preference Level Based Binding Table. draft-levy-abegnoli-savi-plbt-02. IETF Internet-Draft, 2010

    Google Scholar 

  27. Aura T. Cryptographically Generated Addresses (CGA). IETF RFC 3972, 2005

    Google Scholar 

  28. Yao G, Bi J, Xiao P. VASE: filtering IP spoofing traffic with agility. Comput Netw, 2013, 57: 243–257

    Article  Google Scholar 

  29. Yao G, Bi J, Xiao P. Source address validation solution with OpenFlow/NOX architecture. In: Proceedings of IEEE International Conference on Network Protocols, Vancouver, 2011. 7–12

    Google Scholar 

  30. Li J, Mirkovic J, Wang M, et al. SAVE: source address validity enforcement protocol. In: Proceedings of IEEE Computer and Communications Societies. New York: IEEE, 2002. 1557–1566

    Google Scholar 

  31. Liu B, Bi J, Zhu Y. A Deployable Approach for Inter-AS Anti-spoofing. In: Proceedings of the 19th IEEE International Conference on Network Protocols (ICNP), Vancouver, 2011. 19–24

    Google Scholar 

  32. Bremler-Barr A, Levy H. Spoofing prevention method. In: Proceedings of IEEE Computer and Communications Societies. Washington DC: IEEE, 2005, 531: 536–547

    Google Scholar 

  33. Baker F, Savola P. Ingress Filtering for Multihomed Networks. IETF RFC 3704, 2004

    Google Scholar 

  34. Duan, Z, Yuan X, Chandrashekar J. Constructing inter-domain packet filters to control IP spoofingng based on BGP updates. In: Proceedings of IEEE Computer and Communications Societies, Barcelona, 2006. 1–12

    Google Scholar 

  35. Lee H, Kwon M, Hasker G, et al. BASE: an incrementally deployable mechanism for viable IP spoofing prevention. In: Proceedings of ACM Symposium on Information, Computer and Communication Security. New York: ACM, 2007. 20–31

    Google Scholar 

  36. Wu J, Cui Y, Li X, et al. 4over6 Transit Solution Using IP Encapsulation and MP-BGP Extensions. IETF RFC 5747, 2010

    Google Scholar 

  37. Wu J, Cui Y, Metz C, et al. Softwire Mesh Framework. IETF RFC 5565, 2009

    Google Scholar 

  38. Wu P, Cui Y, Xu M, et al. PET: prefixing, encapsulation and translation for IPv4-IPv6 coexistence. In: Proceedings IEEE Global Communications Conference, Miami, 2010. 1–5

    Google Scholar 

  39. Cui Y, Wu J, Wu P, et al. Public IPv4 over Access IPv6 Network. draft-ietf-softwire-public-4over6-09. IETF Internet-Draft, 2013

    Google Scholar 

  40. Cui Y, Wu J, Wu P, et al. Lightweight 4over6 in Access Network. draft-cui-softwire-b4-translated-ds-lite-11. IETF Internet-Draft. 2013

    Google Scholar 

  41. Xu Y, Yang H, Ren F, et al. Frequency Domain Packet Scheduling with MIMO for 3GPP LTE Downlink. IEEE Trans Wirel Communs, 2013, 12: 1752–1761

    Article  Google Scholar 

  42. Huang B, Sun Z, Chen H, et al. BufferBank: a distributed cache infrastructure for peer-to-peer application. Peer-to-Peer Netw Appls, 2012, doi: 10.1007/s12083-012-0165-3

    Google Scholar 

  43. Bai J, Sun Z. Packet classification algorithm based on bloom filter (in Chinese). Comput Eng, 2009, 35: 108–110

    Google Scholar 

  44. Wu J, Wang J, Yang J. CNGI-CERNET2: an IPv6 deployment in China. ACM SIGCOMM Comput Commun Rev, 2011, 41: 48–52

    Article  Google Scholar 

  45. Xiang Y, Wang Z, Yin X, et al. Argus: an accurate and agile system to detecting IP prefix hijacking. In: Proceedings of the 19th IEEE International Conference on Network Protocols, Vancouver, 2011. 43–48

    Google Scholar 

  46. Jiang J, Liang J, Li K, et al. Ghost domain names: revoked yet still resolvable. In: Proceedings of the Annual Network & Distributed System Security Symposium, San Diego, 2012. 1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wu, J., Zhang, Z. et al. Research achievements on the new generation Internet architecture and protocols. Sci. China Inf. Sci. 56, 1–25 (2013). https://doi.org/10.1007/s11432-013-5021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5021-4

Keywords

Navigation